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INTRODUCTION

This document is the first draft of the final report for the program New Methods in Robust Control. The
emphasis of this program was to develop mathematical theory to help control system designers laced with chal-
lenging control problems associated with advanced aerospace vehicles. Relevant applications include flight con-
trol systems for new Air Force fighter/bomber aircraft, the F-18 HARV research vehicle, the NASP vehicle, the
next generation launch system (ALS or NLS), and the Space Station. A common set of feature, characterizing
these problems are:

1) Operation of vehicles in extreme ranges of flight environment
2) Significant uncertainties in dynamic models (e.g. aerodynamics)
3) Wide range of parameter variation during flight (e.g. mass properties)
4) Performance driven system designs (small safety margins)
5) Stability of system is critical to avoid loss of vehicle and human life.

Robustness of a control system is defined to be its capability to provide adequate performance in the presence of
uncertainty. The importance of robustness in aerospace systems is well appreciated by the people who have to
fly them. Bill Dana, NASA Dryden Chief Test Pilot, recently gave a presentation to the NASP community con-
cerning lessons learned in the X-15 Flight Test Program as they would apply to NASP. His two key messages
were:

1) Make the vehicle and its controls very robust with significant performance margins
2) Make very small incremental steps in the flight envelope (-0.5 Mach) during
the flight test program.

The theory developed on our program is motivated mainly by the need for robust controls in real vehicles.

Consistent with the goal of this program, we present three topics out of those worked on during the three years
of this contract. The three topics are:

1) H--optimal Control Theory
2) Structured Singular Values
3) Dynamic Inversion Control

The first of these topics is presented in a paper written by John Doyle and Keith Glover. The H_. theory
presented there is a culmination of the research in that area that has been going on for the last decade. The
theory in its "final" form is elegant from a mathematical viewpoint, but the practical value of that research lies
beyond the solution of the H..-optimization problem itself (which has no guaranteed robustness properties). I--
optimization is one of the primary ingredients of the structured singular value technique. The primary practical
value of the H_ theory is that we can now perform structured singular value synthesis more readily.

The second topic is presented in a document written by Mike Elgersma on mapping the mass-properties varia-
tions on the Space Station into a perturbation structure for a structured singular value design. Elgersma's effort
to construct the perturbation structure was paid for by Space Station contract funds -- our contract only contri-
buted the extra funcis required for him to document the construction in a presentable form. There are now
several papers in the open literature on structured singular va!ie theory but there are far too few showing how
the perturbation structure is made. We included Elgersma's example here as one appiication vhfc, the full
power of the mathematical theory can be applied to a real-world (real-space?) application.

The third topic is presented i. i dnrumn.n ,"eared by =ei, _ , a ".Thale -nns on the subjecL of dynamic
inversion for aircraft pitch-axis control. An abstract of this paper was prepared for the Washington University/
AFOSR workshop in St. Louis, August 15 and 16, 1991. The main new feature of this work is the global stabil-
ity results for complementary dynamics. This result is perhaps the first non-local control stability result that
applies directly to the nonlinear models used in industry for modern aircraft design.
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A state-space approach to H... optimal control*

Keith Glover John Doyle
Dept. Eng. Dept. Elect. Eng.
Univ. Cambridge Caltech
Cambridge CB2 1PZ Pasadena, CA 91125
UK USA

Abstract

Simple state-space formulae are derived for all controllers solving a standard W.
problem: for a given number -y _ 0, find all controllers such that the Ho" norm of the
closed-loop transfer function is < y. Under these conditions, a parametrization of all
controllers solving the problem is given as a linear fractional transformation (LFT) on a
contractive, stable free parameter. The state dimension of the coefficient matrix for the
LFT equals that of the plant, and has a separation structure reminiscent of classical LQG
(i.e., Ni2 ) theory. Indeed, the whole development is very reminiscent of earlier W2 results,
especially those of Willems (1971). This paper directly generalizes the results in Doyle,
Glover, Khargonekar, and Francis, 1989, and Glover and Doyle, 1988. Some aspects of
the optimal case (< -) are considered.

1 Introduction

1.1 Overview

The Ti, norm defined in the frequency-domain for a stable transfer matrix G(s) is

IIGII, := sup 7'[G( jw)] ( : maximum singular value)

The problem of analysis and synthesis of control systems using this norm arises in a number
of ways. We assume the reader either is familiar with the engineering motivation for these
problems, or is interested in the results of this paper for some other reason. This paper
considers particular 7i,, optimal control problems that are direct generalizations of those
considered in Doyle, Glover, Khargonekar, and Francis (1989), and Glover and Doyle (1988),
hereafter referred to as DGKF and GD, respectively.

The basic block diagram used in this paper is

*This article appeared ir 'hree Deca:: cf "!,'nf.t a S:8,cmj7.lrcr . .A Co6.ron of 3urvts al 1&e
Occason of mne both hirthday of Jan C. Wi~lems, H. Nijmeijer and J.M. Schumacher (Eds.), Springer-Verlag
Lecture Notes in Control and Information Sciences vol. 135, 1989.
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K

where G is the generalized plant and K is the controller. Only finite dimensional linear time-
invariant (LTI) systems and controllers will Le considered in this paper. The generalized
plant G contains what is usually called the plant in a control problem plus all weighting
functions. The signal w contains all external inputs, including disturbances, sensor noise, and
commands, the output z is an error signal, y is the measured variables, and u is the control
input. The diagram is also referred to as a linear fractional transformation (LFT) on K and
G is called the coefficient matrix for the LFT. The resulting closed loop transfer function
from w to z is denoted by Tzw = Ft(G, K) .

The main ?i,, output feedback results of this paper as described in the abstract are
presented in Section 4. The proofs of these results exploit the "separation" structure of the
controller. If full information (x and w) is available, then the central controller is simply a
gain matrix Foo, obtained through finding a certain stable invariant subspace of a Hamiltonian
matrix. Also, the optimal output estimator is an observer whose gain is obtained in a similar
way from a dual Hamiltonian matrix. These special cases are described in Section 3. In the
general output feedback case the controller can be interpreted as an optimal estimator for
Fox. Furthermore, the two Hamiltonians involved in this solution can be associated with full
information and output estimation problems.

The proofs of these results are constructed out of a series of lemmas, several of which
have some independent interest, particularly those involving state-space characterizations of
mixed Hankel-Toeplitz operators. A possible contribution of this paper, beyond the new
formulae and theorems, may be some of this technical machinery, most of which is developed
in Section 2. The result is that the proofs of both the theorems and the lemmas leading to
them are quite short. Furthermore, the development is reasonably self-contained, and the
primary background required is a knowledge of elementary aspects of state-space theory, £2
spaces, and operators on £2, including projections and adjoints. More specialized knowledge
about the connections between Riccati equations, spectral factorization, and Hamiltonian
matrices would also be useful.

As mentioned, this paper is a direct generalization of DGKF, and contains a substantial
repetition of material. Roughly speaking, we prove those results in GD which were stated
without proof, using DGKF machinery, which considered a less general problem. An alterna-
tive approach in relaxing some of the assumptions in DGKF is to use loop-shifting techniques
as in Zhou and Khargonekar (1988), GD, and more completely in Safonov et al. (1989). We
also organize this paper much differently than DGKF. The results are presented in a conven-
tional bottom-up linear order, with lemmas and theorems followed by their proofs, which in
turn only use lemmas and theorems already proven. Readers interested in pursuing all the
details of the proofs may find it more convenient than DGKF. This paper lacks the tutorial
flavor of DGKF and the explicit connections with the more familiar R2 problem, although
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the W 2 theory will be found lurking at every corner.
We also consider some aspects of generalizations to the < case, primarily to indicate

the problems encountered in the optimal case. A detailed derivation of the necessity the
generalized conditions for the Full Information problem is given. In keeping with the style
of GD and DGKF, we don't present a complete treatment of the < case, but leave it for
yet another day. Coiuplett derivations of the optimal output feedback case can be found in
Glover et al. (1989) using different techniques.

1.2 Historical perspective

This section is not intended as a review of the literature in R.. theory, nor even an attempt
to outline the work that most closely touches on this paper. For a bibliography and review
of the early 1io literature, the interested reader might see [Francis, 19871 and [Francis and
Doyle, 1987], and an historical account of the results leading up to those in this paper may be
found in DGKF. Instead, we will offer a slightly revisionist history, which lacks some factual
accuracy, but has the advantage of more clearly emphasizing state-space methods and, more
specifically, Willems' central role in ?io, theory. This mildly fictionalized reconstruction tells
things as they could have been, if only we'd been more clever, and thus contains a certain truth
as valuable as that of a more factually accurate accounting. Besides, "historical perspectives"
are often revisionist anyway, we're just admitting to it.

Zanres' (1981) original formulation of Itoo optimal control theory was in an input-output
setting. Most solution techniques available at that time involved analytic functions (Nevanlinna-
Pick interpolation) or operator-theoretic methods [Sarason, 1967; Adamjan et al., 1978; Ball
and Helton, 1983]. Indeed, R.. theory seemed to many to signal the beginning of the end
for the state-space methods which had dominated control for the previous 20 years. Unfor-
tunately, the standard frequency-domain approaches to ?io started running into significant
obstacles in dealing with multi-input-output (MIMO) systems, both mathematically and com-
putationally, much as the Wt2 theory of the 1950's had.

Not surprisingly, the first solution to a general rational MIMO It.. optimal control prob-
lem, presented in [Doyle, 1984], relied heavily on state-space methods, although more as a
computational tool than in any essential way. The steps in this solution were as follows:
parametrize all internally-stabilizing controllers via [Youla et al., 1976]; obtain realizations of
the closed-loop transfer matrix; convert the resulting model-matching problem into the equiv-
alent 2 x 2-block general distance or best approximation problem involving mixed Hankel-
Toeplitz operators; reduce to the Nehari problem (Hankel only); solve the Nehari problem
by the procedure of Glover (1984). Both [Francis, 1987] and [Francis and Doyle, 1987] give
expositions of this approach, which will be referred to as the "1984" approach.

In a mathematical sense, the 1984 procedure "solved" the It, optimal control problem.
Unfortunately, it involved a peculiar patchwork of techniques and the associated complexity
of computation was substantial, involving several Riccati equations of increasing dimension,
and formulae for the resulting controllers tended to be very complicated and have high state
dimension. Nevertheless, much of the subsequent work in n., control theory focused on the
2 x 2-block problems, either in the model-matching or general distance forms. This continued
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to provide a context for a stimulating interchange with operator theory, the benefits of which
will hopefully continue to accrue. But from a control perspective, the 11. theory seemed
once again to be headed into a cul-de-sac, but now with a Q in the corner. The solution has
turned out to involve an even more radical emphasis on state-space theory.

In addition to providing controller formulae that are simple and expressed in terms of
plant data, the methods in DGKF and this paper are a fundamental departure from the
earlier work described above. In particular, the Youla parametrization and the resulting
2 x 2-block model-matching problem of the 1984 solution are avoided entirely; replaced by
a more purely state-space approach involving observer-based compensators, a pair of 2 x 1
block problems, and a separation argument. The operator theory still plays a central role (as
does Redheffer's work [Redheffer, 1960] on linear fractional transformations), but its use is
more straightforward. The key to this was a return to simple and familiar state-space tools,
in the style of Willems (1971), such as completing the square, and the connection between
frequency domain inequalities ( e.g. IGII,, < 1), Riccati equations, and spectral factorization.
In essence, one only needed to think about how Willems would do it, and the rest is simply
technical detail.

The state-space theory of 7oo can be carried much further, by generalizing time-invariant
to time-varying, infinite horizon to finite horizon, and finite dimensional to infinite dimen-
sional. A flourish of activity has begun on these problems and the already numerous results
indicate, not surprisingly, that many of the results of this paper generalize mutatis mutandis,
to these cases. In fact, a cynic might express a sense of d6jd vu, that despite a the rhetoric,
'K,. theory has come to look much like LQG, circa 1970 (or even more specifically, LQ differ-
ential games). A more charitable view might be that current 7', theory, rather than ending
the reign of state-space, reaffirms the power of its computational machinery and the wisdom
of its visionaries, exemplified by Jan Willems.

1.3 Notation

The notation is fairly standard. The Hardy spaces 7t 2 and XL consist of square-integrable
functions on the imaginary axis with analytic continuation into, respectively, the right and left
half-plane. The Hardy space 7Ro4 consists of bounded functions with analytic continuation
into the right half-plane. The Lebesgue spaces £2 = £2(-o,o), £2+ = £ 2[0,o') , and
£2- = £2(-o,0] consist, respectively of square-integrable functions on (-oo, o), [0, oo),
and (-oo,0], and £. consists of bounded functions on (-oo,oo). As interpreted in this
paper, £ will consist of functions of frequency, £2+ and £2- functions of time, and £2 will

be used for both.
We will make liberal use of the Hilbert space isomorphism, via the Lapiace transform and

the Paley-Wiener theorem, of £2 = £2+ ( £2- in the time-domain with £2 = Rf 2 E RI in
the frequency-domain and of £2+ with Rf 2 and £2- with XL. In fact, we will normally not

make any distinction between a time-domain signal and its transform. Thus we may write
w E £2+ and then treat w as if w E 112. This style streamlines the development, as well as
the notation, but when any possibility of confusion could arise, we will make it clear whether
we are working in the time- or frequency- domain.
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All matrices and vectors will be assumed to bc complex. A transfer matrix in terms of
state-space data is denoted

C D

For a matrix M E Cp X
r, M' denotes its conjugate transpose, &(M) = p(M'M)1/ 2 denotes its

maximum singular value, p(M) denotes its spectral radius (if p = r), and Mt denotes the
Moore-Penrose pseudo-inverse of M. Im denotes image, ker denotes kernel, and G~(s) :=
G(-S)'. For operators, r* denotes the adjoint of r. The prefix B denotes the open unit ball
and the prefix 1Zc denotes complex-rational.

The orthogonal projections P+ and P_ map £2 to, respectively, R 2 and H-L (or £2+ and
£2-). For G E C,,, the Laurent or multiplication operator MG £2 -' £2 for frequency-
domain w E £2 is defined by MGw = Gw. The norms on £o and £2 in the frequency-
domain were defined in Section 1.1. Note that both norms apply to matrix or vector-valued
functions. The unsubscripted norm 11e 1 will denote the standard Euclidean norm on vectors.
We will omit all vector and matrix dimensions throughout, and assume that all quantities
have compatible dimensions.

1.4 Problem statement

Consider the system described by the block diagram
Z Wt

G

K

Both G and K are complex-rational and proper, K is constrained to provide internal stability.
We will denote the transfer functions from w to z as T,, in general and for a feedback connec-
tion (LFT) as above we also write T,, = FI(G, K) . This section discusses the assumptions
on G that will be used. In our application we shall have state models of G and K. Then
internal stability will mean that the states of G and K go to zero from all initial values when
W = 0.

Since we will restrict our attention exclusively to proper, complex-rational controllers
which are stabilizable and detectable, these properties will be assumed throughout. Thus the
term controller will be taken to mean a controller which satisfies these properties. Controllers
that have the additional property of being internally-stabilizing will be said to be admissible.
Although we are taking everything to be complex, in the special case where the original data
is real (e.g. G is real-rational) then all the of the results (such as K) will also be real.

The problem to be considered is to find all admissible K(s) such that IITz I 0 < Y (< -y).
The realization of the transfer matrix G is taken to be of the form

5



[ A B , B2  ABG(s)= CI D11 D 1 2  C= D
C2 D21 0 .

compatible with the dimensions z(t) E CP1, y(t) E CP , w(t) E C-', u(t) E C-2, and the state
z(t) E C". The following assumptions are made:

(Al) (A, B 2 ) is stabilizable and (C 2 , A) is detectable

(A2) D12 is full column rank with [ D12 D- ] unitary and D21 is full row rank with D21

unitary.

(A4) A - jwI B2 has full row rank for all w.

I C2 D21I

Assumption (Al) is necessary for the existence of stabilizing contr.ollers. The assumptions
in (A2) mean that the penalty on z = Clz + D12u includes a nonsingular, normalized penalty
on the control u, and that the exogenous signal w includes both plant disturl ance and sensor
noise, and the sensor noise w'ighting is normalized and nonsingular. Relaxation of (A2) leads

to singular control problems.
Assumption (A3) relaxes the DGKF assumptions that (CI, A) is detectable and D 2 C I

0, and (A4) relaxes (A, BI) stabilizable and BI D' = 0. Assumptions (A3) and (A4) are made
for a technical reason: together with (Al) it guarantees that the two Hamiltonian matrices in
the corresponding ?12 problem belong to dom(Ric). It is tempting to suggest that (A3) and
(A4) can be dropped, but they are, in some sense, necessary for the methods in this paper to
be applicable. A further discussion of the assumptions and their possible relaxation will be
discussed in Section 5.2.

It can be assumed, without loss of generality, that -y = 1 since this is achieved by the
scalings -y 1DI, -/ 2 B1 , -- / 2C, -y1/ 2 B 2 , -y1/ 2C 2 , and -y-K. This will be done implicitly
for many of the proofs and statements of this paper.

2 Preliminaries

This section reviews some mathematical preliminaries, in particular the computation of the
various norms of a transfer matrix G. Consider the transfer matrix

G(s)=[ A B (2.1)

with A stable (i.e., all eigenvalues in the left half-plane).
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The norm IIGII arises in a number of ways. Suppose that we apply an input w E £2 and

consider the output z E £2. Then a standard result is that IIG[II is the induced norm of the
multiplication operator MG, as well as the Toeplitz operator P+ MG : -t2 - ?2.

IIGII. = sup I1zl12 = sup IIP+z1l 2 = sup IIP AGWll2
WESE-2 wEBIZ 2+ wEBWi2

The rest of this section involves additional characterizations of the norms in terms of
state-space descriptions. Section 2.1 collects some basic material on the Riccati equation
and the Riccati operator which play an essential role in the development of both theories.

Section 2.3 reviews some results on Hankel operators and introduces the 2 x 1-block mixed
Hankel-Toeplitz operator result that will play a key role in the ?,. F1 problem.

Section 2.4 includes two lemmas on characterizing inner transfer functions and their role
in certain LFT's and Section 2.5 considers the stabilizability and detectability of feedback
systems.

2.1 The Riccati operator

Let A, Q, R be complex n x n matrices with Q and R Hermitian. Define the 2n x 2n

Hamiltonian matrix

H A= R A

If we begin by assuming H has no eigenvalues on the imaginary axis, then it must have n
eigenvalues in Re s < 0 and n in Re s > 0. Consider the two n-dimensional spectral subspaces

X_ (H) and X+(H): the former is the invariant subspace corresponding to eigenvalues in Re

s < 0; the latter, to eigenvalues in Re s > 0. Finding a basis for X_(H), stacking the basis
vectors up to form a matrix, and partitioning the matrix, we get

X_(H) = In x, (2.2)

where X 1,X 2 E Cn xn, and

H X, X' Tx, Re Ai(Tx) < 0 V i (23)

If X 1 is nonsingular, or equivalently, if the two subspaces

X_(H), Im[1 (24)

are complementary, we can set X := X 2X 17. Then X is uniquely determined by H, i.e.,

H - X is a function, which will be denoted Ric; thus, X = Ric(H). We will take the domain
of Ric, denoted dom(Ric), to consist of Hamiltonian matrices H with two properties, namely,

H has no eigenvalues on the imaginary axis and the two subspaces in (2.4) are complementary.
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For ease of reference, these will be called the stability property and the complementarity
property, respectively. The following well-known results give some properties of X as well as
verifiable conditions under which H belongs to dom(Ric). See, for example, Section 7.2 in
[Francis, 1987], Theorem 12.2 in [Wonham, 1985), and [Kucera, 1972]

Lemma 2.1 Suppose H E dom(Ric) and X = Ric(H). Ther

(a) X is Hermitian

(b) X satisfies the algebraic Riccati equation

A'X + XA + XRX- Q = 0

(c) A + RX is stable

Lemma 2.2 Suppose H has no imaginary eigenvalues, R is either positive semi-definite or
negative semi-definite, and (A, R) is sabilizable. Then H E dom(Ric).

Lemma 2.3 Suppose H has the form

H[ A - BB']
I-C'C -A'I

ith (A, B) stabilizable and rank[ A'+jwI C'] n Vw. Then H E dom(Ric), X

Ric(H) 2! 0, and ker(X) C X := stable unobservable subspace.

By stable unobservable subspace we mean the intersection of the stable invariant subspace
of A with the unobservable subspace of (A,C). Note that if (C, -A) is detectable, then
Ric(H) > 0. Also, note that ker(X) C X C ker(C), so that the equation XM = C' always
has a solution for M, for example the least-squares solution given by XtC'.

We may extend the domain of Ric by relaxing th- stability requirement. Even if H
has eigenvalues on the imaginary axis, it must have at least n eigenvalues in Re s < 0.
Suppose that we now choose some n-dimensional invariant subspace, again denoted by X_ (H),
corresponding to n eigenvalues in Re s < 0 and a corresponding basis as in (2.2), but now
satisfying

H [ X1] X[ IiTx, Re (Tx)<:50 Vi (2.5)

This subspace is not uniquely determined by H, but if it still satisfies the complementarity
property, then we can set X := X 2X 1

1 as before, if this X is also Hermitian. We may
thus define a new map Rih, whose domain dom(Ri) will be taken to consist of Hamiltonian
matrices H with the property that an X_(H) exists satisfying the complementarity condition
and with the resulting X := X 2Xj 1 Hermitian. To show that this is actually a map, we have

8



to verify that X is uniquely determined, which is not always the case. In fact, the conditions
under which Ric is actually a map are intimately connected with the conditions on existence
of W. optimal controllers. It turns out that for the cases of interest in the present paper,
whenever H is in dom(Ri-c, the subspace will be uniquely determined. Thus whenever R7.c is
needed, it will be a well-defined map, but this must be proven. Fortunately, these cases can
essentially be reduced to spectral factorization problems and standard theory can be applied
(e.g. Gohberg, Lancaster and Rodman (1986)).

We may further extend the domain of Rt by relaxing the complementarity condition.
The minimal requirement we will place on X_(H) is that (2.5) hold and that

X'X 2 = X2XI (2.6)

is Hermitian. Note that this condition also does not depend on the particular choice of
basis taken in (2.2). It is convenient to define dom(R- c) to be the set of those H for which a
subspace X_(H) exists and satisfies (2.5) and (2.6). Once again, the map Ric, from dom(Ri')
to n dimensional subspaces of C2

n (this is a Grassman manifold) does not always exist as the
subspace is not uniquely determined by H.

The same remarks about R-i as a map apply here to Ric. These have been introduced in
order to treat the optimal case, but their use will be limited as this case is not analysed in
detail. Note that dom(Ric) C dom(Ric) C dom(R2). Also, if H E dom(Ric) then RZ and
RE are obviously well-defined maps and Ric(H) = RZ(H).

2.2 Computing R-oc, norm

For the transfer matrix G(s) in (2.1), with A stable, define the Hamiltonian matrix

H [ A+ BR-'D'C BR-1B' 1 (2.7)-C'(I- DD')-'C -(A+ BR-D'C)'

A- I : ,][ ]R-' D'C B'] (2.8)= C'C - A' I -CID

where R = I - D'D . The following lemma is essentially from [Anderson, 1967], [Willems,
1971], and [ Boyd et al., 1989].

Lemma 2.4 I. Let d(D) < 1, then the following conditions are equivalent:

(a) IGIIl < 1

(b) H has no eigenvalues on the imaginary axis

(c) H E dom(Ric)

(d) H E dom(Ric) and Ric(H) > 0 (Ric(H) > 0 if(C,A) is observable)

II. Let d(D) < 1, then the following conditions are equivalent:

9



(a) IGIIll < 1

(b) H E dom(R-c)

(c) H E dom(R' ) and R'(H) is unique uth RA'(H) _0 (R'2(H) > 0 if(C,A) is observ-
able)

Proof From

(I - G-G)(s) = -c'c ,
D'C B

it is immediate that H is the A-matrix of (I - G~G)- 1. It is easy to check using the PBH
test that this realization has no uncontrollable or unobservable modes on the imaginary axis.
Thus H has no eigenvalues on the imaginary axis iff (I - G~G)- 1 has no poles there, i.e.,
(I - G~G)- 1 E RLo. So to prove the equivalence of (Ia) and (Ib) it suffices to prove that

IIGII,- < 1 #* (I - G~G) - ' E RC.

If IIGII.. < 1, then I-G(jw)*G(jw) > 0, Vw, and hence (I-G~G)- 1 E 1£oo. Conversely,
if IIGII® > 1, then [G(jw)] = 1 for some w, i.e., 1 is an eigenvalue of G(jw)*G(jw), so
I - G(jw)*G(jw) is singular. Thus (Ia) and (Ib) are equivalent.

The equivalence of (Ib) and (Ic) follows from Lemma 2.2, and the equivalence of (Ic) and
(Id) follows from Lemma 2.1 and standard results for solutions of Lyapunov equations.

The proof of part II is more involved and is given by the established results on spectral
factorization as in Gohberg et al.(1986), since I - G~G > 0 for all s = 3W. N

In part II it was assumed that d(D) < 1 so that the Hamiltonian matrix could be de-
fined. Alternatives that avoid this are to consider Linear Matrix Inequalities or the deflating
subspaces of matrix pencils. This is discussed more in Section 5.2.5.

Lemma 2.4 suggests the following way to compute an 7ioo norm: select a positive number
7; test if IIGIIko < y by calculating the eigenvalues of H; increase or decrease 7 accordingly;
repeat. Thus It.. norm computation requires a search, over either - or w. We should not
be surprised by similar characteristics of the R,,-optimal control problem. A somewhat
analogous situation occurs for matrices with the norms IIMI12 = trace(M*M) and IIMIk. =

&[M]. In principle, IIMII can be computed exactly with a finite number of operations, as can
the test for whether &(M) < -y (e.g. 721 - M*M > 0), but the value of &(M) cannot. To
compute d(M) we must use some type of iterative algorithm.

2.3 Mixed Hankel-Toeplitz Operators

It will be useful to characterize some additional induced norms of G(s) in (2.1) and its
associated differential equation

= Ax + Bw

z = Cx+Dw (2.9)
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with A stable. We will prove several lemmas that will be useful in the rest of the paper. It
is convenient to describe all the results in the frequency-domain and give all the proofs in
time-domain.

Consider first the problem of using an input w E L2- to maximize IIP+zII2. This is
exactly the standard problem of computing the Hankel norm of G (i.e., the induced norm of
the Hankel operator P+Mo : XL - WI2 ), and can be expressed in terms of the Gramians LC
and L,

AL, + LA'4 BB'=- 0 A'Lo + LoA + C'C = 0 (2.10)

Although this result is well-known, we will include a time-domain proof similar in technique
to the proofs of the new results in this paper.

Lemma 2.5 sup IIP+zII1 = sup IIP+MGwII2 = p(LoL.)
WEBf-2 -. WEB%-'2

Proof Assume (A, B) is controllable; otherwise, restrict attention to the controllable sub-
space. Then Lr is invertible and w E £2- can be used to produce any z(0) = xo given
z(-oo) = 0. The proof is in two steps. First,

inff 1I12 X= L-'xo (2.11)wE42_

To show this, we can differentiate x(t)'L;-z(t) along the solution of (2.9) for any given input
w as follows:

d (WL1 ) = i'Lcz + x'L['. = x'(A'Lj 1 + LC 1A)x + w'B'L x + x'Lc Bw

Use of (2.10) to substitute for A'Lj + LCjA and completion of the squares give

d (IL _11W) = Rw2 - - X 2

Integration from t = -oo to t = 0 with x(-oo) = 0 and x(O) = xo gives

xOL-lxo = ljIII12 11w - B'L- 1 X112 < IIWI12

If w(t) = B'e-A'tL-lxo = B'Lcle(A+BB'L)txo on (-oo,0], then w = B'L-jx and equality
is achieved, thus proving (2.11).

Second, given z(O) = xo and w = 0, the norm of z(t) = CeAtXo can be found from

I IP+zl = j oeA'tC'CeAtzodt = xLoxo

These two results can be combined as in Section 2 of [Glover, 1984]:

sup 1P+zII = sup IIP+zlI =_o I= 2-pIW1 max Z xo= p(LoLc)
WEB4- O~wE4. 2~~ -oso x4L;'z -1



If IIGIJ,, < 1 then by Lemmas 2.1 and 2.4, the Hamiltonian matrix H in (2.8) is in
dom(Ric), X = Ric(H) > 0, A + BB'X is stable and

A'X + XA + GIG + (XE + G'D)R1 (B'X + D'C) = 0 (2.12)

Similarly, if er(D) < 1 and IIGjI. < 1 then by Lemma 2.4, the Hamiltonian matrix H in (2.8)
is in dom(R's), X = R~t(H) ! 0, A + BB'X has eigenvalues in the closed left half plane and
(2.12) holds.

The following lemma offers additional consequence of bounds on IIGIk,,. In fact, this
simple time-domain characterization and its proof form the basis for the entire development
to follow.

Lemma 2.6 L. Suppose IIGII,, < 1 and x(0) = xo. Then

SUP (IIzII2 _ IIWII2) = X X
wEC2

and the sup is achieved.
II. Suppose that IIGII.. 1, j&(D) < 1, and x(0) = xo. Then

SUP (IIzII2 _ IIWII2) = X X

Proof: We can differentiate x(t)'Xx(t) as above, use the Rticcati equation (2.12) to substitute
for A'X + XA, and complete the squares to get

7t-(ZX) = 1z1 1w1 JR 1 [Rw - (B'X + D'C)x]1

If wv E C 2+, then x E IC2+, so integrating from t = 0 to t = oo gives

JjzJ~- ~wj x 'Xxo - JIR'/ 2 JRw - (B'X + D'C).T) ~xX~ (2.13)

For Part I, if we let w = -R-'(E'X + D'C)x = BIXe[A+BR'(B'X+D'C)taxo, then w E £C2+

because A + BR-'(B'X + D'C) is stable. Thus the inequality in (2.13) can be made an
equality and the proof is complete. Note that the sup is achieved for a w which is a linear
function of the state.

For Part II, A + BR'I(B'X + D'C) may have imaginary axis eigenvalues, hence the
inequality in (2.13) is still valid, but may not give the supremum. A sequence of functions w,
can however be constructed to approach the supremum by considering X, = Ric(H,) where

H. = [ A.-CD] (R +c2I)' [ D'C B']

Then for w, (R + e2 I)'I(BX, + D'C)x

IZII I-IW. 1II = 4,XIXz 0 + C211W J12 < XX

12



Finally taking the limit as c -* 0 gives the result by uniqueness of X = lim_..o Xe. a

Now suppose that the input is partitioned so that B = [B B 2 ], D = [ D,1 D2 ,

C(s) [ Gl(s) G 2 (s) ], and w is partitioned conformally. Then IG2 1II. < 1 iff

HW:=[ A 0] + [ B2 IR1]C B

is in dom(Ric), where R 2 := I - D'D 2. Similarly, &(D2 ) < 1 and lIGIlKo < 1 iff Hw E
dom(R'c). In either case, define W = R7t(Hw), which will be unique, and let

w E W := W1 1 E W 2",EW2 E C 2  (2.14)

We axe interested in a test for supEBW IIP+z1 2 < 1 (_< 1), or equivalently

sup Ilrwj 2 < 1 (< 1) (2.15)
wEBW

where r = P+[MG, MG,] W -+ R2 is a mixed Hankel-Toeplitz operator:

= 1]P+ [ G G 2 ] ], W2 E L 2

W/2  I W 2

Note that r is the sum of the Hankel operator P+ Mc P_ with the Toeplitz operator P+ MG2 P+.
The following lemma generalizes Lemma 2.4 (BI = 0, D1 = 0) and Lemma 2.5 (B 2 = 0, D2

0).

Lemma 2.7 I. (2.15) holds with < iff the following two conditions hold:

(i) Hw E dom(Ric)

(ii) p(WL,) < 1

II. (2.15) holds with < iff the following two conditions hold:

(i) Hw E dom(Ric)

(ii) p(WL.) < 1

Proof As in Lemma 2.5, assume (A, B) is controllable; otherwise, restrict attention to the
controllable subspace. By Lemma 2.4, condition (i) is necessary for (2.15) for both cases, so
we will prove that given condition (i), (2.15) holds iff condition (ii) holds. By definition of

W, if w E W then
IIP+zII2 - IwI12 = lIP+zIl2 -1iP+1w 2ll}- iP-1wII 2

Note that the last term only contributes to IIP+zII1 through z(0). Thus if Lc is invertible,

then Lemma 2.6 and (2.11) yield

13



sup {lIP+zII 2 - ItwiI x(O) = = xWxo - L- (2.16)
WEW

For part I we will prove the equivalent statement that p(WLc) > 1 iff SUPWEBW l1I'wI12 1.
The supremum is achieved in (2.16) for some w E W that can be constructed from the
previous lemmas. Since p(WLc) > 1 iff B zo 5 0 such that the right-hand side of (2.16) is
> 0, we have, by (2.16), that p(WL,) > 1 if[ 3 w E W, w 5 0 such that IIP+zlll > jjwjII. But
this is true iff supwEBW rirwII2 > 1.

For part II, note that (2.15) holds with < iff
11 _ IIW112SUP l]Irw] -2 o] 2 0

WEBW

which by (2.16) is if p(WL,) < 1. 0

The F1 proof of Section 3.3 will make use of the adjoint r* : 72 -+ W, which is given by

rz P=z) ] G z (2.17)

where PGz P_(Gz) = (PMG)z. That the expression in (2.17) is actually the adjoint of
r is easily verified from the definition of the inner product on vector-valued £2, expressed in
the frequency-domain as

1 00
z1 , X2 >:= 7Ir j z(jW)zX2 (jw)dw (2.18)

The adjoint of : W --. W2 is the operator r* : h2 --+ W such that < z, rw >=< r*z,w >
for all w E W, z E nt 2 . Directly using the definition in (2.18), we get

< z, rw > = < z, P+(GIwi + G2 W2 ) >=< z, Gjwj > + < z, G2W2 >
=< P_(G-z),wj > + < z,W2 >

= < r'z,w>

2.4 LFT's and inner matrices

A transfer function G in 1Z7,,, is called inner if G~G = I, and hence G(,w)*G(jw) = I
for all w. Note that G inner implies that G has at least as many rows as columns. For G
inner, and any q E C" , w E £2, then JIG(jw)qll = 1q11, Vw, and JIGwII 2 = 11w112. Because
of these norm preserving properties inner matrices will be central to several of the proofs.
In this section we give a characterization of inner functions and some properties of linear
fractional transformations. First, we present a state-space characterization of inner transfer
functions analogous to Lemma 2.4 that is well-known and simple to verify (see [Anderson,
1967], [Wonham, 1985], [Glover, 1984]).

Lemma 2.8 Suppose G = [ ] with (o, A) detectable and Lo, = L', satisfies

14



AL + LA + C'C = 0.

Then

(a) L0 > 0 iff A is stable

(b) D'C + B'Lo - 0 implies G~G = D'D

(c) L. > 0, (A, B) controllable, and G~G = D'D implies D'C + B'Lo = 0.

The next lemma considers linear fractional transformations with inner matrices and is
based on the work of Redheffer (1960).

Lemma 2.9 Consider the following feedback system,
z U,

Sr P1 1  P1 2  E EZ1HC0

-v P 21 P 22

Q

Suppose that P~P = I, Pil E TR¢7O, and Q is a proper rational matrix. Then the
following are equivalent:

(a) The system is internally stable and well-posed, and IIT, Il < 1.

(b) Q E R%.10 and JJ~jj** < 1.

Proof (b) = (a). Internal stability and weli-posedness follow from P, Q E 7IZR4, IIP2211. : 1,
IIQDJ. < 1, and a small gain argument. To show that IIT,,oO < 1 consider the closed-loop
system at any frequency s = jw with the signals fixed as complex constant vectors. Let

IIQII =: e < 1 and note that T , = Pjj'(I - P22 Q) E TZ7 i,. Also let r := IITwrII,. Then
Ilwii !5 xIjrII, and P inner implies that 1lzj12 + 11r112 - Ilw112 + 11v112. Therefore,

Iz111 < IIWI12 + (e2- 1)lIrIl 2 _ [1 - (1 - 2)K-2]j1jWj2

which implies IITiuII** < 1.
(a) => (b). To show that IIQIol < 1 suppose there exist a (real or infinite) frequency w

and a constant nonzero vector r such that at s = jw, IIQr -- Irll. Then setting w = Pill (I-
P22Q)r, v = Qr gives v = T,,w. But as above, P inner implies that IlzI)2+ 11r1l 2 - Iwl1+ Ilvll2
and hence I1zI12 > 1w112, which is impossible since IIT.IIo. < 1. It follows that &(Q(jw)) < 1
for all w, i.e., IIQI. < 1, since Q is rational.

Finally, Q has a right-coprime factorization Q = NM- 1 with N, M E lZ1"d,. We shall
show that M- 1 E N77... Since TU,,,Pj 1 = Q(I-P 22 Q)- 1 it has the right-coprime factorization
T.,Pj-j = N(M - P22 N) - But since T ,,,Pjl1 E 7?I"OO, so does (M - P22 N)- 1 . This implies
that the winding number of det(M - P22N), as s traverses the Nyquist contour, equals zero.
Furthermore, since det(M - aP 2 2 N) 5 0 for all a in [0,1] and all s = jw (this uses the fact
that IIP22 11I < 1 and iJQilo. < 1), we have that the winding number of det M equals zero too.
Therefore, Q E 7 Mc-.. and the proof is complete. a
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2.5 LFT's and stability

In this section, we consider the stabilizability and detectability of feedback systems. The
proofs in this section are very routine and use standard techniques, principally the PBH test
for controllability or observability, so they will only be sketched.

Recall the realization of G from Section 1.4 and suppose that A E Cn, and that z, y, w
and u have dimension P1, P2, ml, and M 2 , respectively. Thus C 1 E CP' x r , B 2 E Cnxrn2, and
so on. Now suppose we apply a controller K with stabilizable and detectable realization to
G to obtain T,.. For the following lemma, we do not need the assumptions from Section 1.4
on G for the output feedback problem.

Lemma 2.10 The feedback connection of the realizations for G and K is,

(a) detectable if rank [ A -  AI  B2 n + M2 for all ReA > 0.

(b) stabilizable if rank [ A-A B1  n + P2 for all ReA> 0.
[ C2  D21

Proof Form the closed-loop state-space matrices and perform a PBH test for controllabil-
ity and observability. It is easily checked that any unobservable or uncontrollable modes
must occur at A violating the above rank conditions (see Limebeer and Halikias (1988) or
Glover(1989) for more details), hence giving the results. *

3 Full Information and Full Control Problems

In this section we discuss four problems from which the output feedback solutions will be
constructed via a separation argument. These special problems are central to the whole
approach taken in this paper, and as we shall see, they are also important in their own right.
All pertain to the standard block diagram,

z to

G

Y U

but with different structures for G. The problems are labeled

FI. Full information

FC. Full control

DF. Disturbance feedforward (to be considered in section 4.1)
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OE. Output estimation (to be considered in section 4.1)

FC and OE are natural duals of FI and DF, respectively. The DF solution can be easily
obtained from the FI solution, as shown in Section 4.1. The output feedback solutions will
be constructed out of the FI and OE results. A dual derivation could use the FC and DF
results.

The F1 and FC problems are not, strictly speaking, special cases of the output feedback
problem, as they do not satisfy all of the assumptions. Each of the four problems inherits
certain of the assumptions A1-A4 from Section 1.4 as appropriate. The terminology and
assumptions will be discussed in the subsections for each problem. In each of the four cases,
the results are necessary and sufficient conditions for the existence of a controller such that
IIT,#JiJ < y and the family of all controllers such that IITzwac < 7. In all cases, K must be
admissible.

The 7.o solution involves two Hamiltonian matrices, Ho, and J, which are defined as
follows:

R'.D 1 . - [ 1], where DI.:=[D1  D 12 ]1 =DID. 0 012

A := 1 _ [7 2 I p 0 where D. 1  = D2: D'D - 0 0 J 2

-C.C -A' 0-C' ,1

[ ] B[DBI -4 (3.2)

If Ho E dom(Ric) then let X1, X 2 be any matrices such that

Hoo[I X2 = []TX, XX 2 =X2XI, ReAi(TX)<0V (3.3)

Similarly if Jo E dom(R-tc) then let Y, Y2 be any matrices such that

2 Y2 Y'Y 2 = Y2 Y, Re Ai(Ty) ! 0 V i (3.4)

Further if in addition Ho. E dom(R'c) and/or J. E dom(R' ) then define,

X. := X 2 X I I, Y. := Y2 Y 1_-  (3.5),

Finally define the 'state feedback' and 'output injection' matrices as

F [F := -R_ [D'.Cl + B'Xo] (3.6)

L: [L L 2 := -[BI + Y.C')R' (3.7)

17



3.1 Problem FI: Full Information

In the FI special problem G has the following form.

[A B, B2 1
G(s) = [ 1 D 12  (3.8)

I [I 1 0 0

It is seen that the controller is provided with Full Information since y = w In some

cases, a suboptimal controller may exist which uses just the state feedback x, but this will
not always be possible. While the state feedback problem is more traditional, we believe that
the full information problem is more fundamental and more natural than the state feedback
problem, once one gets outside the pure H"2 setting.

The assumptions relevant to the FI problem which are inherited from the output feedback
problem are

(Al) (A, B 2) is stabilizable.

(A2) D12 is full column rank with [ D 12 D± I unitary.

(A3) [A - jw1 B2 has full column rank for all w.

The results for the Full Information case are as follows:

Theorem 3.1 Suppose G is given by (3.8) and satisfies A1-A3. Then

(a) 3K such that IiTzwII0 < 1 ,* Ho, E dom(Ric), Ric(Hoo) > 0

(b) If &(DID11) < 1 then 3K such that tIT.,I.,, < 1 * H. E dom(R-c), X( X 2

X2X 1 >_ 0. X 1 and X 2 are defined in (3.3).

(c) All admissible K(s) such that JIT,,11.. < 1 are given by

1T2 jI F
for Q E'Rd,., IlQJl. < 1.

Note that the sufficiency proof for part (b) is omitted. We will prove the FI results and
the FC results follow by duality.
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3.2 Motivation of the proofs for Problem F1

We will first motivate the proof by considering a completion of the squares assuming that
Xo, > 0 and cyrists. Let us factor

R "o 2 I]l[o1 T 0 (3.9)

T'JT (3.10)

[TTI+ T2T2 T2' D 11 -IJI1 (3.11)

:€ T2 = D12D1,, TT 1 = I - D',D±DLDn (3.12)

Now I - D11DDID, > 0 since at s = oo

-FI(G, K)(oo) = D1, + D12 1((00) [

and 1 > ff(X(G, K)(oo)) ? " (D D11 ).
Now consider the Riccati equation for Xo,

[x~~~ ]H I)/=0

X. A + A'Xoo + C'Cl - F'RF 0 (3.13)

and observe that

U [ ]
= ' D'.D,. w U 'W + x'(C'D. + XB) ]

+ [ w' u' ] (D'.C1 + B'Xoo)x + z'F'RFx

= ~~ ]2~LiW +Z f[u + [wI u' jDAXx+ PtxF'

= z'Z - W' W + d('Xox)

Integrating from t = 0 to oo with z(O) = z(oo) = 0 gives

IIzI] - Dw[JI = [T2w + u - [ 72 I ] F.II -2 T(w - Fz)Il. (3.14)
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Hence to obtain lIz112 < IIwI12 we require IIT2w+u- [ T2 I ] Fx112 < IIT(w-F )1j2 and

we see that in some sense the "worst w" is Fix, whereas the "best u" is -T 2w + [ T, I Ft.

Notice that in the case T2 $ 0 (#- Dnl $ 0) the natural full information controller uses both
w and z.

3.3 Proofs for Problem FI: Necessity

(a) If there exists an admissible controller such that IITzIIc0 < 1, then

He. E dom(Ric), Ric(H 0 ) > 0 (3.15)

(b) If there ezists an admissible controller such that IIT 10. < 1, then

H.. E dom(R7c), XIX 2 = X2Xl > 0. (3.16)

We will prove a slightly stronger result, but before that, we need some preliminary results.
Let us first consider

H _ = [ -G C1  A' 1 D.] T'J-'Tl' DI.C, B'_CC -C' D  I1.

where T and J are given in (3.10). Note that

Di.T1 = D-LD'ID1 1 TT', D1 2

BT-' = F(B1 - B2 T 2 )T 17', B 2 ] [ B1  B 2  (3.17)
I- DI.R 0'D. = I - D12 D' 2 + D±D' DuTj71T -1 D 'D D D

= -(I+ D'D 1 (TTI 1)-10D±)D 

= D±S-1 D' (3.18)

where

S I - D ID1 1 D'ID > 0.

Hence

H = -CD±SIDC 1  -B 2 B ' ]

where

N := A - B2 D 2 C + fjT;- 1D'IID±D' CI

Next we will show that we can assume without loss of generality that the pair (DI 1 , -N)
is detectable. This simplifies the technical details of the proof. Thus suppose that the pair
(DiC,, -N) is not detectable or equivalently that (D'IC, -A + B 2 D'2CI) is not detectable.
That is, (A - B2D' 2CI) has stable modes that are not observable from DICI (note that
modes of (A - B2 D1 2 C1 ) on the imaginary axis are observable from DICi by A3). If we now
change state coordinates so that
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B All A 12 Bil B 21

A21 A 22 B12 B 22

C11 C 12 Dil D 12

with A1 2 - B2 1 D' 2 C1 2 = 0, DLC 12 = 0, (D'C 11 , -All + B 2 1 D' 2 C 11 ) detectable and (A 2 2 -

B 2 2 D'1C 12 ) stable, then the state equations for the system with controller K [ bAI ]
can be written as

il = Al1 l + B 1 1w + B 21(D 2C12 X2 + U)

z = C1 1 i + D1 1w + D 12 (D 2CI2X2 + U)

i2 = A 2 2 : 2 + A 2 1 1 + B1 2w + B 22 U

= A:i + b 1 :1 + 12X2 + B 3w

D 2 C1 2 X2 = C: + D)IXI + D2 z 2 + D 3W + D12C 1 2X2

If the controller, K, is admissible with IIF(G, K)11,, < 1 (< 1), then the above state

equations show that the subsystem G1  Al DI1 B21] also h a s an a d m issible con -
C 11 Dil D12  alohsa]disbecn

troller, K, (given by the final three equations above), which satisfies IIYe(G1, K 1 )[j. < I
(< 1). Furthermore, suppose we can find a suitable !table invariant subspaceX 1

X 2 1

for the Hamiltonian for G, then

X 1 1 0

0 I
X2 1 0

0 0

will be suitable for G since (A 22 - B 22 D' 2 CI 2 ) is stable. We will therefore assume that
(D C 1 , -A + BD 2 C) is detectable for the remainder of the necessity proof.

The proof also requires a preliminary change of variables to

v u - Fox

This change of variables will neither change internal stability nor the achievable norm since
the states can be measured. The matrix F is the optimal state feedback matrix for a corre-
sponding "R2 problem as given below. By Lemma 2.3 the Hamiltonian matrix

A-B 2 D 2 C -B B ]
HC[D±DCl -(A - B2DI )
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belongs to dom(Rie) since (A, B 2 ) is stabilizable, and X0 : Ric( Ho) > 0 since (D' Cl, -A+
B 2 D'12Cl) is detectable. Define

FO : -(D'12 C1 + BIXo), AF,,: A + B2 F0 , CIF C1 + D1 F

[AF,) B,

Suppose D_1 is any matrix making [D12 D_1 ] an orthogonal matrix, and define

~ I]AF 12 -X~ 1  ]L (3.19)U U. I LCIF. D12  D1L

Then the transfer function from w and v to z becomes

Z=A ,, BI B12 I[w] =GW+ UV (3.20)
Z[ C1Di D12  V

The last result needed for the proof is the following lemma which is easily proven using
Temna 2.8 by obtaining a state-space realization, and then eliminating uncontrollable states
using a little algebra involving the Riccati equation for X 0.

Lemma 3.2 [U U_±] is square and inner and a realization for C,- U UL1 is

Gc- uU] AF, I112 -XjCj'D 1 IZY (3.21)
. [ Uj- B'Xo + D1'1ClFo D',D12  D'1D1

This ipliesthat UandU are each inner, and both U7G, and U-G, are in 1I7-t
We are now ready to state and prove the main result.

Proposition 3.3 L. If sup min IIzI12 < 1 then H, E dom(Ric) and Rie(H,,) > 0.
wEBA4+ VE4 2 +4

II. If sup min I1z112 :< 1 then Hc, E dom(Ric) and XIX 2 = X2'X1  ! 0. X, and X 2wE B42 VE-64+ -

are defined in (3.3).

Proof of Proptsition Since [U UJj is square and inner by Lemma 3.2, IIZ112 = 1I[U U±]_z 112,
and

[U ULJz [ UGw + J

Since v E ?*t2 , its optimal value is v' = -P+U"'Gcw and the hypotheses of the proposition
imply that
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sup (UGcw < 1 ( 1)
wEB7W2  U7 Gw ]12

Mixed Hankel-Toeplitz operators of this type were considered in Section 2.3. We can define
the adjoint operator r* :L+-* W (W from (2.14)) by

r'w= [P-(U~Gcw) P U ]Gcw

of the operator r : W -W ? 2 given by

r [ q ] =P+(G_(Uq, + U±q2)) =P+Ga-[ v ] [q
q2 C j. 9

Hence

sup llrqJl2 < i (_ 1)
qEBW

This is just the condition (2.15), so from Lemmas 2.4 and 2.7 and (3.21) we have that

IIGULl. < 1 (< 1)

and hence Hw E dom(Ric) ( or Hw E dom(Ric)) where (substituting for the RPiccati equation
for X0 and noting that B'Xo + D'ICIFo = T BfXo + D' 1D 1 DICi, see (3.17),

(Hw)ll -= AFo + (-Xo1 C-D)DSD1 1(TT 1)- 1 (TA.f3Xo + DID±D'C1 )

-Xo'(A - B 2 D 2C)'Xo - 'CD
I -LD o 1-I -Xo

-X O 'CID.DT BIo
-- 1o C LS. -'ID' D11/)D± i C

= -Xo'N'Xo - XolC'DIS-'D C1

(Hw)12 = XojC'D±-1  , 1XO

(Hw) 21 = -(Xof31T1 + C'D±DI D 11)(TITI)-(TAJBXo + D'ID, DIC1 )
-Xob 1B Xo - N'Xo - XoN + XoB 2B'Xo - C DS 1

It is now immediate that

T -X 1
Hw=TH~Twere0 [- 0  11 T' 0 -IJ

The appropriate stable invariant subspace for Hw will be Im [ and hence that for

H.. will be

23



IoT [ Ij=Im [I-xi6w]

Moreover Lemma 2.7 will give that p(WXo 1 ) < 1 ( 1) and hence X0 > W (Xo W)
giving that

(I-XjW)'Xo=Xo-W>0 (>0)

or

x. = Xo(Xo - w)-1Xo > 0

in case (a). This completes the necessity proof for both parts (a) and (b).
0

3.4 Proofs for Problem FI: Sufficiency

Al admissible K(s) such that IfT 1,o < 1 are given by

K~s) _Q~) r , 0 F -I1T2 ]I F2  0]
for Q E lrcloo, IIQI 0I < 1.

Note that this contains the if part of (a).
Before beginning the proof, we will perform a change of variables suggested by Section 3.2.

Firstly change the input variable to

v=u+T 2 w-[T 2  I]Fx

with the corresponding controller

Ktmp(s) K(s)+[[T2  IJ]F T 2 ]

and state equations

= AFz + (BI - BT 2 )w + B2 v

z = CIFz + D±D'Dllw + D1 2v

where

AF :=(A +B 2 [T2  I]IF); CIF C + D1 2 [T 2  I]F

Also define the new feedback variable

:= TI(w - Fiz)

Now suppose
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Kt.p(s) = Q(s)TI [ -Fl I

that is

v= Qr

This gives the following feedback configuration in which one would expect from (3.14) that
P~P = I since IIzI12 - [wI12 = IJvII2 - 11rII2 and this is now proven together with the stability
of AF.

z w
P[ AF B - B 2 T2  B2 ]

P = C1" "D±D D D1 2
SV -TF T 0

Q (3.22)

Lemma 3.4 P E 7 C7"[0 , P~P = I and Pill E 1Z~,.

Proof The observability Gramian of P is X, since

A'FX + X AF + C'IFCIF + F' T' I [TI 0 ]F

= A'XQ + Xo.A + C' 1 C1 + F'[ T2 ](B'XC + D'12 C 1

+(X~,,,B 2 + CjD 12) [ T'2 I ] F+Ix[ T2c' I 'T , ]
+F' { [T2 I] + [+

TI L 0 0
= FI{~T2T2 ]T2' Ti ]±}

=0

where we have used the identity - B'XOO - D' = [ T I ] F. Furthermore, since X,, > 0
and (F1 , AF) is detectable (ncte AF+(Bi -BT 2)F1 = A+BF is stable since X, = Pdc(H..))
we have that AF is stable by Lemma 2.8(a). Also

D'I1 D.L Tl [CI+DI2T 2 ,I 1F]+[B 2',IX[ D~~ J I -T2F'+B~Bx

= [ 1 1 ](D.Cl + RF +B'Xc,)
=0
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Hence by Lemma 2.8(b),

P-P ~ I _DLl 1D11 r T, 0

as claimed. It is also easily shown that Pill E R7Zoo since its poles are Ai(A 4- BF). U
The proof of sufficiency for Theorem 3.1(a) and the class of all controllers given in Theo-

rem 3.1(c) can now be completed. Let K be any admissible controller such that IIT..II, < 1.
Then T,, E 7I7 and T,, = P1 + P12T,. Now define Q = (I + T.,pPjjlP22 )- 1 T,,Pill so
that Q(I - F22Q)-P 21 = T.,. and T,, = P1 + P12Q(I - P22Q)-1P 21. Since P22 is strictly
proper all the above are well-posed zad Q is real-rational and proper. Hence Lemma 2.9
implies that Q E RZ74 with !IQIIo < 1. This verifies that all transfer functions T , and
hence T,,, can be represented in this way.

Remark

In the optimal case of part (b) the proof of sufficiency is more delicate and to illustrate the
difficulty the following example is given. Let

1 1 1

=0 0

1 0

0 1 0

then, H- -11 , [Xl _. TX] -1 o.X 0 0
An optimal controller is given by

u =Fx -w, = = (F + 1, z I --'x, = :Fx- w,

where F + 1 < 0 but F is otherwise arbitrary. Clearly for this controller z = 0 and hence
Z1= 0, Z2 = --.

If the controller for the suboptimal case with 7- 2 = 1 - C2 is applied (see DGKF item
FI.5), then,

C2

K(s) = [ -X" - Q(s)(1 - e2 )X.. Q(s)

An admissible optimal controller is obtained as c -- 0 iff Q(s) = -1, in which case K(s)
+ -l_+f+ 2 ) -21 ].
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3.5 Problem FC: Full Control

The FC problem has G given by,

rA B1  1 0

G(s) C1 Dil 0 I (3.23)

C2 D21 0 0

and is the dual of the Full Information case: the G for the FC problem has the same form as
the transpose of G for the FI problem. The term Full Control is used because the controller
has full access to both the state through output injection and to the output z. The only
restriction on the controller is that it must work with the measurement y. The assumptions
that the FC problem inherits from the output feedback problem are just the dual of those in
the FI problem:

(Al) (C2 , A) is detectable

(A2) D21 is full row rank with [21 unitary.

(A4) [A - J'C DjBw ] has full row rank for all w.

Necessary and sufficient conditions for the FC case are given in the following corollary.
The family of all controllers can be obtained from the dual of Theorem 3.1 but these will not
be required in the sequel and are hence omitted.

Corollary 3.5 Suppose G is given by (3.23) and satisfies Al, A2 and A4. Then

(a) 3K such that IIT, lII, < 1 < J,, E dom(Ric), Ric(Jo,) 2! 0

(b) 3K such that ITu,, 5 _ 1 * J, E dom(-c), X X 2 = X2X 1 > 0. X, and X 2 are

defined in (3.4).

4 Main Results: Output feedback

The solutirol to the Full Information problem of section 3 is used in this section to solve the
output feedback problem. Firstly in Theorem 4.2 a so-called disturbance feedforward problem
is solved. In this problem one component of the disturbance, w2 , can be estimated exactly
from y using an observer, and the other component of the disturbance, wl, does not affect the
state or the output. The conditions for the existence of a controller satisfying a closed-loop
74,0-norm constraint is then identical to the FI case.

The solution to the general output feedback problem can then be derived from the trans-
pose of Theorem 4.1 (Corollary 4.3) by a suitable change of variables which is based on X,,
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and the completion of the squares argument given in Section 3.2 and the characterization of
all solutions given in Section 3.4.

The main result is now stated in terms of the matrices defined in section 3 involving the
solutions of the X, and Y.. Riccati equations together with the "state feedback" and "output
i~tctir~n" matrices F and L. It wi" further be convenient to additionally assume unitary

changes of coordinates on w and z have been carried out to give the following partitions of
D, F, and Ll.

F1' FI'2  F2 1
F ~Lil Dill, D11 12  0 (41

D[LI D112
L' 0 1 0

Theorem 4.1 Suppose G satisfies the assumptions A1-A4 of section 1.4.

(a) There exists an admissible controller K (s) such that I(G, K)II < -y (i. e. IT~I
-y) if and only if

(i) 7y > max(&[Dllll, D11 12 , ], Z7[D' 111, Dl' 1]

(ii) H.. E dom(Ric) with X,, = Ric(H,) : 0

(iii) J,,. E dom(Ric) with Y.. = Ric(Jc,) 0

(iv) p(X. y.~) <7_2.

(b) Given that the conditions of part (a) are satisfied, then all rational internally stabilizing
controllers K (s) satisfying I I Y(G, K)11,, < -y are given by

K = .F(Ka, -1) for arbitrary 4' E RdiooC such that 114,1, < -y

where

[A bi B 2 ]
Ka C1  D11  D12

[C2 D2l 0J

=bl -Diii 112D I - DiiiiD'iii)'lDni 2 - D12

b 12 E Cmn2Xmn2 and b21 E CP'2'(J' are any matrices (e.g. Cholesky factors) satisfying

D12D12 = I - D11~ 2 1 - 'lDl,- '11

b 21 2  = I - D11112 (,y
2 I -ljDjll-D12

and

B?2 = Zc;1 (B2 + L12)D12,
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C2 = -bnl(C 2 + F12),

i = -Z, 1 L 2 + B2b 2) 11,

61 = F2 + b1lb2:1 ,

A = A +BF + lb1  6 2 ,

where

Z.o = (I - -YyX).

(Note that if Dii = 0 then the formulae are considerably simplified.)
The proof of this main result is via some special problems that are simpler special cases

of the general problem and can be derived from the FI and FC problems. A separation type
argument can then give the solution to the general problem from these special problems. It
can be assumed, without loss of generality, that - = 1 since this is achieved by the scalings
7-1DII, 7- 1/2B1 , 7- 1/ 2C1 , 71/ 2B2 , 71/ 2 C2, - 1 Xr, 7-1Y, and 7-1 K. All the proofs will
be given for the case 7 = 1.

4.1 Disturbance Feedforward

In the Disturbance Feedforward problem one component of the disturbance, wl, does not
affect the state or the output. The other component of the disturbance, w2 ( and hence
the state z), can be estimated exactly from y using an observer. The conditions for the
existence of a controller satisfying a closed-loop I/,o-norm constraint is then identical to the
Full Information case.

Theorem 4.2 (Disturbance Feedforward)
Theorem 4.1 is true under the additional assumptions that

Bib - 0; A - BID 1 2 is stable. (4.2)

In this case,

Y =, Z=I, L=-[0, B D 1
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Proof

(a) The necessity of the conditions is immediate from Theorem 3.1 since the existence of an
output feedback controller implies the existence of a state feedback controller. Further, the
additional condition F(D11b') < 1 is dearly necessary by considering s = oo. Theorem 3.1
also shows that all controllers satisfying II.I(G, K)11" < 1 are given by

us = Q(s)Ti(w - Fix) + T2(F1 : - w) + F 2 :

r = Ti(w - Fi)

vi = Qr

For any Q E RW'oo, ItQIo < 1. Also the transfer function Tu is obtained from the block
diagram

z w
P

_._--- zas T-- = (I - QP22)i-QP21

Q ' (4.3)

and hence

U = ((I - QP 2 2)-lQP 21 - T2 )w + T2F. ±+ F2 : (4.4)

We need to find a Q(s) that can be written as an output feedback. The assumption of
(4.1) will give the following realization for G,

A 0 B 12  B2
GCui Dill, D112 0C 12 D1 1 2 1 D11 2 2  I

C2  0 I 0

Hence wl affects z but neither x nor y and we must firstly find a Q(s) in (4.4) such that
Tu,. is zero. Since T., 1 is zero we need

Tu., = (I - QP22 )- 1 (Q(P 2 1 + P2 2T2) - T2 )b' = 0 (4.5)

Using the state space realization that for [ P21 P22 ] in (3.22) gives

[P2 n + AP.T 2 )&I = Ti &I

=: QT 1bS. = T2 b' (4.6)

Again without loss of generality we can assume that
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T, T11 T12 1
0 T'13J

where
TIT 1  I - D',D±DLDll

and hence

T'jl= I -DIllT = Dl2 D11 11D111=
T2V = D112DilbD = D1121

TiT12 = -D 1 11D11 121 r Tp-l~tlllll l D1112 f) fb 2

T 3Tz 3  = I- D12D- D 112D 112  1D21

Hence (4.6) implies that for Q = Qi Q2 ],

Q, = D,121T=I

and QQ" < I implies that

Q2Q2- < I-D1121 11 l1j 1121

(I+ D1 1 2 1 (I - D' 11 D1111 - DlI21DII 21)-'D'121)-'

D 2Db 2

where the indicated inverses exist by (a)(i). Hence

Q2 = D12Q3 for Q3 E RN.o, JIQ311 < 1.

We have hence shown that all controllers can be written as feedback from w2 and x by
substituting for Q into (4.4) as

u= [ D1121T;7j1, D1 2Q3 j [ T12  wl Fix)

+ [ Dil21, Di 22 ] (Fix - w) + F 2 :

= b)l 2Q3 b 2l(W2 - D2 1F1:) + Dl 2 1Tjl[T 2W2 - [TIlTI2]FX]

+ [ D1 1 21 , D1 1 22 ] Fix - D 1 1 22w 2 -+ F 2 :

= b 12Q3 b 21 (W2 - D21F1 :)

+ (-D,1 21 (I - D' 1 1 1D11i)-1 D'llDu 12 - D1122)(w 2 - D21F1 :)
+ F~x

= (biI + D12Q3 D2i)(W2 - F12X) + F 2:.
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This gives the complete family of controllers in terms of x and w2 . The disturbance, w2 ,
and state z can be exactly estimated from the measurement, yi, by means of an observer as
follows,

I = A! + B121b2 + B2u

U = bi11(h 2 - F 12 1) + D 12p + F 2 :

P = Q3q

q = D21w2-!)21F 2 i

It fohows that

- = (A - B 1 2C2)(x -:0

and hence for z(0) = 1(0) = 0, E(t) = x(t) and ib(t) = w(t) for all t > 0. Furthermore,
internal stability will follow from the stability of A - B 12 C2.

Finally it is straightforward to verify that this family of controllers corresponds exactly
to those of Theorem 4.1 with Y, = 0, Z = I, and since

L D, "-1B1

and 0 = Rlc(J(.).

The transpose of Theorem 4.2 can now be stated to obtain another special case of Theo-
rem 4.1.

Corollary 4.3 (Output Estimation)
Theorem 4.1 is true under the additional assumptions that

D = 0, A - B2 D' 2 C1 is stable.

In this case

1

4.2 Converting Output Feedback to Output Estimation

The output feedback case when the disturbance, w, cannot be estimated from the output is
reduced to the case of Corollary 4.3 by a suitable change of variables. Since we showed in
(3.14) that

I121 _-II1 2 = II12; - 1123
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where

v = u +T 2 w- [ T2 , I ] Fx

r = TI(w- Fiz)

We will perform the change of variables with v replacing z and r replacing w. Hence

= (A + BFi)x + B1 T'r + B2u

v = u +T 2 TT-'r -F 2 x

Y = C 2 z+D 21TT'r+D 21Fz

and the transfer matrix from (r to (v)is

A +B 1 F1  B 1T' B 2 ]
Ga(s) := -T 2T 1  1 (4.7)

C2 + D21F1  D21TT-1  0

Similarly substituting v for u in the equation for G gives that the transfer function from
( w ) to ( z )is P as defined in (3.22). We can show with a little algebra the equivalence

of the first two of the following block diagrams, with T,. given by the third one.
Z U) Z lb v r

G P "r
yurv y u

K TuK

Lemma 4.4 Let G satisfy A1-A4, and assume that X.. ezists and X.. > 0. Then the fol-
lowing are equivalent:

(a) K internally stabilizes G and II.FI(G, K)lI. < 1,

(b) K internally stabilizes Gnu and Il.IG,,,,r,, K)11,, < 1,

(c) K internally stabilizes Gtmp and IIYF(Gtmp, K)100 < 1,

where Gnu is given by (4.7) and

A + B1 F1  B1  B 2

Gtmp := -D 12F2  D11  D1 2

C2 + D2 F1 D 0
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Proof

(a) * (b) Referring to the above block diagram for P and Tm, it is seen by Lemma 2.9
that T.. E R-H,0 with ITzw[I <c 1 iff T E RfOO with IIT.1ioo < 1. (Recall that P~P = I,
P E RToo, and Pi' E Rlt,,). In order to prove internal stability of both systems we note that
this is equivalent to the realizations being stabilizable and detectable. The realization of T, is
detectable since the system zeros of (G,,,,)12 are the eigenvalues of A+ BF (see Lemma 2.10).
Further the realisation of T,. is stabilizable from r iff the realisation of T,, is stabilizable from
w since they are related by state feedback. Finally if the realisation of T, is internally stable
with JIT, II. 0 < 1 then the above block diagram for Tz, = FI(P, - K)) is internally
stable by a small gain argument and hence so is that for Y(G, K).

(b) * (c) Internal stability of both systems is equivalent since the closed-loop A-matrices
are identical. Further note that

and recall that

T T1 = I - D' 1D1 D'D 1 1 .

Hence

"L(Gtmp, K)= Dj- D 1 2 ] [.F(G K)T]

and

I - F'(Gtmp, K)~2F'(Gtmp, K) = T;(I - FI(Gnu, K)~Y'(Gr,, K))T

hence giving the equivalence of (b) and (c).

The importance of the above constructions for G., and Gtmp is that they satisfy the
assumptions for the output estimation problem (Corollary 4.3) since A + BF is stable. Hence
we are now able to prove Theorem 4.1.

Proof of Theorem 4.1 (Output Feedback)

(a). The necessity of the conditions will be first proved. Let K be a proper controller satisfying

1T..,11. <1, then the controller K I C 2 D 2 1 I solves the full information problem and hence

(i) holds. Similarly B2 ]K solves the full control problem and hence (iii) holds. From

Lemma 4.4 K stabilizes Gtmp with HIFi(Gtmp, K)IIo, < 1, which satisfies the assumptions for
the output estimation problem of Corollary 4.3, since A4 implies that
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rank [A+B1 FI-jwI B1 1 n+ml
I C 2 +D21 F1  D21]

Hence we require

Jtmp E dom(Ric)

and

Ytmp Ric(Jtmp) 0

where

JtMp = A' + FB1 0AB1

F2D'2 C'+ F D21  D 1  -12 2
-[-BID 1  -BD'1  i D21BI C2 + D21FI

We claim that

J. :=[ IJOOX" X00 Jtmnp

where J,, was defined in (3.2) as

j 0 F-BI'B -,A] -BID.I ]A.-1 D.1 B' C]

To verify this claim let

M [C;2F2 (4.8)

(4.9)

Substituting for B'XO0 from (3.7) gives

BI X,, = F, - D'1JQ (4.10)

E = D,(I-DI + C 1F

I -rD1NF

and hence
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0 (4.11)

Now consider the claim component by component. Clearly

( )21= (J.) 2 1 = (Jtmp)21

Secondly

(J)22= -A - BBX + B 1 D,-'(M + E)

-A + B 1DoRA-'M - B 1(B'Xoo + D' 1 9)

= (Jmp)22

by (4.10).
Finally

(J,)12 - (Jtmp) 1 2  = X. A + A'X 0 + XooBIB' Xoo
- (M' + E')R-'(M + E) + M'R-M

Substitute from (3.13):

XcoA + A'Xo, -CIC 1 + F'RF
- -(*V' - F'D'.)(I* - D1.F) + F'D'.D1 .F - F F

- -N'N + F'D'*N ± 'D 1 F - FF 1

Equation (4.10) gives

X...B 1 B'XOO = (Fl - k'D 11)(f 1 - D',-9)

and (4.11) and (4.8) give

-M'R-'E - E'f?-'M- E'R-E = -F2D12N' "- N'D 12 F2

- P*'(D 11D'i - I)*T

Adding these three expressions gives (J.)12 = (Jtmp)12 and the claim that J,,= Jtmp is
verified.

Since

t[o = ;o] +C'L'),

we have

Jtmtp[I - - x"cY" (A' + C'L)

and
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Ytmp := Ric(Jtmp) = Y 0 (I - XoY 0 ) - 1 > 0.

It is readily verified that this implies and is implied by (iv), that p(X,,Yoo) < 1. To see

this, consider Y... = O], Yol >0, and note that Y - X, >0; conversely note

that X 0 Y. = (I + YtmpXoo)-'YtmpX.o and hence Ytmp > 0 implies p(XCoYoo) < 1.
Therefore the necessity of the condition is proven. Sufficiency also follows immediately

because of the equivalence of the G and Gtmp problems.

(b) Characterization of all solutions

To characterize all controllers for G we just need to characterize all controllers for Gtmp using
Corollary 4.3, with Ytmp = Y..Z ' where

Zoo : (I -Y.Xc.)

Ltmp = -(B 1 D.1 + YtmM')k

= -Z-j(B 1 D° + Yoo(_XooBiDol + M'))-'

-Z-'(B 1 D'1 + Y 0.(C- E'))! -

Ftmp ]; Xtmp O; Ztmp= I

We can nov. substitute in the formulae of Theorem 4.1 with Gtmp and the above (O)tmp
values to obtain the class of controllers.

B2  = (B 2 + Z,'7 LlD 12 -Z,1Yoo'D2)f1

= - YooXoaB 2 + LID 12 - Y0 (F'D'. + C')D 2 )b 1 2

= Z,I(B2 + LIDI2 )Di1 2

by (3.7). The expressions for 01, 6 2, fB1 and A are then obtained by a direct transcription
of the above expressions and are hence omitted. This completes the proof.

5 Generalizations

In this section we indicate how the results of section 4 can be extended to more general cases.
Firstly the optimal case is considered when a variety of new phenomena are encountered.
Secondly the removal of assumptions A1-A4 is discussed. Finally some comments are included
for the case when the optimal R.o-norm is necessarily achieved at s = oo.

5.1 The Optimal Case

In the optimal case any combination cf the corditions of Theorem 4.1(a) may be violated. In
order that the Hamiltonian matrices H,, and J,, can be defined we will assume that condition
(a)(i) in Theorem 4.1 is satisfied and will state the result proven in Glover et al. (1989).
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Firstly if H.,, J.. E dom,(Rs) then there exist [ X satisfying equation (3.3) and

[ 2 satisfying equation (3.4). In the optimal case X, and/or Y, may be singular so

that X,: X 2 Xj- and Y.,: Y2 1,71 may not exist, and if these inverses ex:I~t Z,,,

I- -2YXX,. may be singular. In order to avoid taking these inverses we will modify the
definitions of the 'state-feedback' matrix, F in (3.7), and the 'output injection' matrix, L in
(3.7), as follows.

.P -R-' [D'I.C1 Xl + B'X 2]
LO - [Y1

1B1D', + YC']k-l

Furthermore as in (4.1) we assume that D, FO, and LO have been transformed and partitioned
as follows.

r FO' 1 L01' Dill, D1112  0 (51[LO' D' ] L' D1121 D1122  I
2LO' 0 1 0

The solution to the output feedback problem in the optimal case can now be stated (Glover
et al. (1989)).

Theorem 5.1 Suppose G satisfies the assumptions Al-A4 of section 1.4 and

(a) There eazists an admissible controller K (s) such that iY (G, K)Il (i. e. IT .,k 0
-y) if and only if

(i) He.. E dom(Ric) with Xl, X 2 satisfying (3.3) such that XIX 2 >0.

(ii) J. E dom(Rc) with Y1, Y'2 satisfying (3.4) such that Y1'Y 2 > 0.

1 -Y 2
1 X2  Y2

1Y 1

(b) Given that the conditions of part (a) are satisfied, then all rational internally stabilizing
controllers K (s) satisfying I I.F(G, K)I 11, 5 -y are given by

K = Y 1(K., 'IP) for arbitrary -P E lZc1t0.

such that :i5i -y, det(I - (Ka)22(00)4(oo)) 7- 0.

where

ID21  0 C02\/
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# denotes a suitable pseudo inverse, Dij are defined in Theorem .i. and

ho (Y 1 B 2 + L0212

:= -b21(C 2XI +' 2 )
h : -L0 + 012-I'
Co := 2 + DnDb102

Ao ~x+ o/-1o _. Tyk + hobf-lfCo
A° := E~x+.,1 ,21 2, .'.12,
: Y X 1 - -2Y 'X2

The descriptor form of the equations for the controllers has been used as proposed for
optimal Hankel-norm approximation by Safonov et al. (1987). At optimality 2 will typically
be singular and the state-space equations of Theorem 4.1 are not possible. Moreover the
matrix (st - A° ) may be singular for all s, but the transfer function K.(s) nevertheless
remains uniquely defined. The condition that det(I - (K 0 )2 2(oo)$(oo)) 0 0 is required so
that this LFT is well-posed. It is often the case that all the controllers can be characterized by
4. = M 14IM2 for non-square constant matrices, MIMi = I and M 2 M2 = I, with -ti E 7c'o

such that IIIll. < 7.
The optimal case may also occur when H,, or J, have eigen-values on the imaginary axis

but He,, J,, E dom(R'- ). In this case Theorem 5.1 can give regular state-space equations
with P, X 1, and Y all invertible. The stable invariant subspace of H., or J , will only be
unique when the additional constraint that X'X 2 and Y]Y 2 are Hermitian is included, and
this requires some special purpose algorithms (see Section 5.2.5).

5.2 Relaxing Assumptions A1-A4

5.2.1 Relaxing A3 and A4

Suppose that,

G= I I
1 0

which violates both A3 and A4 and corresponds to the robust stabilization of an integrator.
If the controller u = -ez, for e > 0 is used then

-isT.. = - , with I1T..,1. =

Hence the norm can be made arbitrarily small as c --+ 0, but e = 0 is not admissible since it
is not stabilizing. This may be thought of as a case where the 24,-optimum is not achieved
on the set of admissible controllers. Of course, for this system, ?i, optimal control is a silly
problem, although the suboptimal case is not obviously so.
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If one simply drops the requirement that controllers be admissible and removes assump-
tions A3 and A4, then the formulae in this paper will yield u = 0 for both the optimal
controller and the suboptimal controller with -P = 0. This illustrates that assumptions A3
and A4 are necessary for the techniques in this paper to be directly applicable. An alterna-
tive is to develop a theory which maintains the same notion of admissibility, but relaxes A3
and A4. The easiest way to do this would be to pursue the suboptimal case introducing c
perturbations so that A3 and A4 are satisfied.

5.2.2 Relaxing Al

If assumption Al is violated, then it is obvious that no admissible controllers exist. Suppose
Al is relaxed to allow unstabilizable and/or undetectable modes on the jw axis, and internal
stability is also relaxed to also allow dosed-loop jw axis poles, but A2-A4 is still satisfied. It
can be easily shown that under these conditions the closed-loop H,. norm cannot be made
finite, and in particular, that the unstabilizable and/or undetectable modes on the jW axis
must show up as poles in the closed-loop system.

5.2.3 Violating Al and either or both of A3 and A4

Sensible control problems can be posed which violate Al and either or both of A3 and A4.
For example, cases when A has modes at s = 0 which are unstabilizable through B 2 and/or
undetectable through C2 arise when an integrator is included in a weight on a disturbance
input or an error term. In these cases, either A3 or A4 are also violated, or the closed-loop
N. norm cannot be made finite. In many applications such problems can be reformulated
so that the integrator occurs inside the loop (essentially using the internal model principle),
and is hence detectable and stabilizable.

An alternative approach to such problems which could potentially avoid the problem
reformulation would be pursue the techniques in this paper, but relax internal stability to the
requirement that all closed-loop modes be in the closed left half plane. Clearly, to have finite
?i, norm these closed-loop modes could not appear as poles in T,,. The formulae given in
this paper will often yield controllers compatible with these assumptions. The user would
then have to decide whether closed-loop poles on the imaginary axis were due to weights and
hence acceptable or due to the problem being poorly posed as in the above example.

A third alternative is to again introduce c perturbations so that Al, A3 and A4 are
satisfied. Roughly speaking, this would produce sensible answers for sensible problems, but
the behaviour as E -- 0 could be problematic.

5.2.4 Relaxing A2

In the cases that either D12 is not full column rank or D21 is not full row rank then improper
controllers can give bounded ?Ji-norm for T, although will not be admissible as defined in
section 1.4. Such singular filtering and control problems have been well-studied in N"2 theory
and many of the same techniques go over to the W,,-case (e.g. Willems(1981), Willems et
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ao.(1986) and Hautus and Silverman(1983)). In particular the structure algorithm of Silver-
man (1969) could be used to make the terms D12 and D21 full rank by the introduction of
suitable differentiators in the controller.

5.2.5 Behaviour at s = oo

It has been assumed in Theorem 5.1 that

-Y > max(&[D1111, D 1112 , ], &[D1111, D 1 21])

and a necessary condition for a solution is that this holds with >. If equality holds then one
or both of the Hamiltonian matrices cannot be defined. This corresponds to the case

inf &(.F1(G(oo), K(oo))) = 1
K(oo)

where K(oo) is just considered to be an arbitrary matrix. If

inf &(Y(G(jw), K(jw))) < 1, for some w = wo
K(jw)

then a bilinear transformation from the right half plane to the right half plane that moves the
point jw0 to oo will enable the Hamiltonians to be defined. One of them will however have an
eigen value at the point on the imaginary axis to which the point at 00 has been transformed.

A more intricate situation arises when

inf &'(Y1(G(jw), K(jw))) = 1, V w.
K(jw)

Here the corresponding J-factorization problem (see Green et a.(1988)) or spectral factoriza-
tion problem is rank deficient for all w. The theory of spectral factorization for such cases can
be derived via the solutions to a Linear Matrix Inequality (Willems(1971)), or via the stable
deflating subspace of the zero pencil (see Van Dooren (1981) and Clements and Glover(1989)).
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Introduction

The space station is acted upon by internal torques and external torques. The internal torques are
due to moving payloads, astronauts, control moment gyros (CMGs), etc. The external torques are due
to aero, gravity gradient, earth's magnetic field, reaction jets, etc.

If there were no external torques, the total torque on the system could be kept zero by command-
ing the CMG torque to offset the other internal torques. The resulting CMG momentum would remain
finite since the momentum of the other internal torque producing elements are finite.

To keep the system momentum bounded, the average external torques must also be zero. This
could be done by using the reaction jets, however they use expendable fuel. In order to minimize the
use of expendable fuel, some other source of external torque must be used to counter the aero torque.
The large moments-of-inertia (MOI) of the space station give rise to attitude dependent gravity gradient
torques large enough to offset the aero torque.

The gravity gradient torques depend on the MOI of the vehicle, so variations of the MOT can have a
significant impact on the closed loop system stability and performance.

Several earlier studies of the space station attitude dynamics have looked at ways of analyzing the
mass properties variations which appear in the moment-of-inertia matrix [WBWGLS], [BWGS], [WW],
[RS], [BP]. Since the variations are quite large, it is important to remove as much conservatism as
possible by taking advantage of the known structure of the moment-of-inertia matrix. The structure of
a generic moment-of-inertia matrix is completely described by the fact that it is symmetric positive
definite and the sum of any two of its eigenvalues is equal to or greater than the remaining eigenvalue.
More specific structure is implied if the mass-properties variations arise from some specific scenario
such as a single payload mass moving in some prescrioed bounded region.

In this paper, three cases are examined in detail. The first case exactly represents the perturbed
system dynamics for all moment-of-inertia variations due to a payload of fixed mass moving in a given
rectangular region. The second case exactly represents the perturbed system dynamics for all possible
moment-of-inertia matrices. The third case exactly represents the perturbed system dynamics for all
diagonal moment-of-inertia matrices. Case 1 can be combined with either case 2 or case 3.



Expressing the Mass-Properties Perturbations as Linear Fractional Transformations

We have been using ±i (structured singular values) to analyze the robustness of the space station
controllers. In order to use the g-synthesis or g-analysis techniques on a perturbed linear system, the
perturbations must appear as rational functions of some undetermined parameters B. Then linear frac-
tional transformations can be used to put the perturbed system into the standard A, P, K format used
in the p computations [ZD]. This procedure is related to the factorization of matrix polynomials in
many 5 variables and can lead to very large dimensions of the A matrix (especially if the factorization
is not minimal).

The linearized angular dynamics of a rigid body are rational functions of the moment-of-inertia
matrix J, so if the perturbed J can be written as a rational function, then the perturbed dynamics can be
put into the form required for the g± computations.

The variation in the moment-of-inertia matrix J can come from several different sources. The pri-
mary variations in J come from movable payload masses and from variations in the mass properties of
the space station itself.

Three types of variations in J are considered. Case 1 considers variations due to a movable pay-
load. This type of variation is quadratic in the payload location and linear in the payload mass, so they
come naturally in the form required for pi computations. A detailed description is given for how to
represent this perturbed system in the A, P, K format. Care was taken to find the smalles* possible
dimension for the required A matrix, however the resulting A matrix was still 30 x 30. This perturba-
tion structure was used to compute g for various space station attitude controllers and produced reason-
able results.

Case 2 considers generic variation in the J matrix. Let J be Represented in a factored form:
J = U I UT, where U is a special (det = 1) orthogonal matrix and Y is a positive diagonal matrix. The
physical origin of the J matrix ensures that the entries of the Y matrix are linear in the total mass and
quadratic in the geometric distribution of the mass. In order to express the entire J matrix as a rational
function, we must also be able to express the U matrix as a rational function of its three independent
parameters. This is made possible by the Cayley Transform. Details of representing generic variations
in J as rational functions are given. The smallest size A matrix for this generic case is approximately
160 x 160 which we considered to be too large for practical use. However if the J matrix is assumed
to be diagonal, then the problem simplifies enough to be of practical use.

Case 3 considers all possible diagonal perturbations to the J matrix.
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NOTATION

MASS PROPERTIES

r = The vector from the space station c.g. to the payload c.g.

Zy z o0
Y 0

ml The mass of the space station (without payload)

m2  The mass of the payload

m The reduced mass of the space station and payload

J, The moment-of-inertia matrix of the space station (without payload)

J2 The moment-of-inertia matrix of the payload

J12= -m 2  The increase in MOI due to separation of the space-station and payload c.g.'s

The system moment-of-inertia matrix with respect to the system c.g.

JY Jy Jy The components of the system moment-of-inertia matrix
J'z Jyz J Z

STATES AND INPUTS

All vectors without superscripts are in body axes. Vectors with an LV superscript are in the Local

Vertical Local Horizontal reference frame which is centered in the spacecraft and rotates at orbit rate (x

axis along the flight path, z axis towards the earth, y axis perpendicular to the orbit plane).

0 angular rate vector

C = [e e.] rotation matrix from the LVLH reference frame to the body axes reference frame.

H CMG momentum vector

Tum, TCMG Aero and CMG torques

LINEARIZED STATES AND INPUTS

At equilibrium, the principle body axes will not be aligned with LVLH, so define a new set of body

axes which are aligned with LVLH at equilibrium. The MOI matrix, J, will not be diagonal in these

new body axes. The set of three angles, 0 are the small deviations from equilibrium.

6
0 small angle deviations between the LVLH and body reference frames (not a vector)

h linearized momentum

,zro, !CMG linearized aero and CMG torques

4



MISCELLA -4EOUS

i n  An n x n identity matrix

WOLV = "o0 angular rate of the LVLH reference frame (orbital rate)
0

e= = a unit vector along the flight path in LVLH coordinates

e2 = ] a unit vector normal to the orbit plane in LVLH coordinates

e3 = [ a unit vector pointing towards earth in the LVLH reference frame

I I I II r pl IIII[ I llll ll5



Nonlinear Equations of Motion

The nonlinear equations of motion for the space station and a moving payload have been examined
in [LSS] and [WHS]. These references examined the results of various payload motions using noai-
linear simulations. In this discussion, we will assume that the speeds and accelerations of the payload

are small, however the separation of the space station c.g. and the payload c.g. can be quite large so

the resulting gravity gradient torques will be quite large. In later sections, we will show how to

represent the linearized dynamics as a linear fractional transformation in the (x,y,z) position of the pay-

load. This will allow us to use structured singular values to determine how robust a control system is
to the MOI variations.

diagram of earth and 2-body SSF/payload

If the equations of motion are written with respect to the .omposite system c.g., then the transla-
tional and rotational dynamics decouple. The equations are further simplified by assuming that the two

bodies have the same angular velocity.

The torque due to gravity gradient is given by:

TGG = 3)0 2  Jz (1)

The torque due to payload velocity and ac~eleraton is given by:

6



- I YI (2)

We will assume that payload motion with respect to the main body is usually quite slow, so that Ti

can be represented as a bounded external disturbance. However the MOI matrix, J, depends on the

payload position r and the resulting changes in the gravity gradient torques can be quite large.

We will assume that the aero torque can be represented as a bounded external disturbance.

The attitude dynamics are giver by:

J 6 + 6 J co = 3o 0
2 b_ J e,, - T (3)

where

T = TCMG - T_, - Taero (4)

The attitude kinematics are given by:

C+ () - Go) C =0 where C = [e,, ] (5)

The CMG dynamics are given by:
+ 6) H = TCMG (6)

7



Linearized Equations of Motion

Note that at equilibrium, the principle body axes can have arbitrary orientation with respect to the

LVLH reference frame, so we will define a new set of body axes which are aligned with LVLH at

equilibrium. In this new set of axes, C = I at equilibrium, but J is not diagonal.

Since C=I at equilibrium, O = -)oe, and = .

The equilibrium equations are:

0 = -w 2  Je + 3o 2 t3 Je_3 - ]To (7)

solving for the equilibrium torque, we get:

T 0 = -(0 0
2 .J2 + 30 0

2 ?3 Je3 (8)

We will now determine the linearized equations for small variations about this equilibrium.

For first order variations from equilibrium,

C I + 8 where b is skew symmetric

c =de (9)

dt-

Substituting this into the nonlinear attitude kinematics, and keeping first order terms in - and 0 gives:

(= 6 + WOLV + toLV _ (10)

Differentiating this and keeping first order terms in 0 and 0 gives:

- + _LV (11)

We now have expressions for the first order variations of the states and their derivatives in terms of the

angles and rates 0, 0 between the LVLH reference frame and the body reference frame. The torque

inputs must also be written as first order variations from the equilibrium torque, however, the results

depend on whether we use the body reference frame or the LVLH reference frame to express these

torques. Note that T0 = Tov.

If we use the body reference frame for the torques (as in [WBWGLS]), we get

T = T0 + RMG (12)

If we use the LVLH reference frame for the torques, we get:

T = C T Lv = (I + )(TV + -tGLV) = 1O + !CMGLV - -TO 0 (13)

Since the -T0 term multiplies the first order term 0, it must be included in the A matrix of the linear-

ized system when using the LVLH torque inputs.
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The equilibrium value of the torque is given by:

Io~o2 (~J -~J 2  I J,.I (14)
LJ

Note that

OLV 6CT C (15)

Plugging the first order terms for the states and the inputs into the nonlinear attitude dynamic equations
and keeping only the first order terms in 0, 0, 0 and T~ gives:

J ( + 0)LV6) =8 + V '0 + LV ejX [~ j + cOLV + 0 LV J]+

7..{J)LV x [J oLv +30) 0
3 x [~ X constant termls(1a

+TO IV x [J [+ LvO] + 3o0 3 x [ [-3 linear terms

weJ ov x E+ &)Lv 1 3.) 03J j ] e x t - linear terms

+ higher order terms

Keeping only the linear terms gives:

J 0 0 ~[ol(1 6b)J WO 2  R -1 31J ; 0 0 j IfOe 2 6
2 0 1 2 O

9000f3-- -



J0 [Li(J), Le(J)I [02] - !CMG

= 11L(J), Lo(J)] lio G - 121 (160)

= [L6LV(J), LeLV(j)] -0 -- CMGLV

where LLV(J) and L(J) are the following linear functions of J.

LLV(j) = [L6LV(J), LLV(j)] = [[[J (J e2A + 31J - - U S3) - - (J b-

0 2JY, (J. - Jy, + Jz [-4(Jyy - Jzz) 4 JXY -4xz (17)

--Jxx + Jyy - Jzz) - 2Jxy 0 -Jxz Jyz Jxx - J

L(J) = [Lo(J), Lo(J)] (18)

where

Lo(J) = LeLV(j) skew symmetric.

L9(J) = LeLV(j) --- _T = [LoLV(j)]T (19)

(002

In the nonlinear equations of motion, the gravity gradient torques were not a function of the rotation
angle about the ez vector and the gravity gradient torques had zero component in the z direction. In
the linearized equations of motion we get one or the other of these attributes, depending on whether we
represent the torques in the LVLH or body axes reference frame.

For -,CMG Lv inputs, the gravity gradient torque has zero component about the z axis which is
aligned with the gravitational force. However, as the Oz angle varies, the gravity gradient torque
rotates around in the x,y plane.

For _.CMG inputs the gravity gradient torques are not a function of Oz, but they have components
in all three axis.

Linearization of the CMG dynamics is simpler in the LVLH reference frame:

_LV = + CMG (20)

10



diagram of J and L(J) and integrators



Moments-f-Inertia for the Composite Vehicle

The system cg is given by:

m1 M.f-cg I + M2 -r,.
-. g MI+ M2  (21)

and the MOI of the system about the system cg is given by:

j= f ( _!cg) 2dm(R)
systemn

(P ~-~)d () 'Ir2 cidMjR)- MI M2 Qg2 :sg 1)2 (22)
bodyl bod2k MI + M2

Let

J J (k -IgI)2 dMfl-) J2 = f ( -rOg2 d1(R) (23)
body 1 body2

and

m12 M.c +cgM2 (24)

then

J = JI + J2+ J2(25)

We can simplify the expression for J12 by setting

M MnIM2  and r= rcg2-rcgI 26
MI + M2

giving

~y2+Z2 -xy -xz1
J1 -M =2 M _ Xy X2+Z2  -yz (27)

[-XZ -yz X2+y2J

12



Perturbed System Dynamics due to Mass-Properties Variations

The only dependence on J in the linearized dynamics comes from the equation for 8.

We will now show how variations in J1, J2, and J12 can be combined.

Since L(J) and LLV(J) are linear in J,

L(J) = L(JI) + L(J2) + L(J12)

and (28)

LLV(J) = LLV(JI) + LLV(J 2) + LLV(J 12)

so the linearized dynamics can be written as

0 1 + J2 + J12) = L(J1) + 'hL(J K _ -CMG

or (29)

1+ J 2 + J12) 0 -- [LLVJI + LLV j 2 ) "+ LLV(JI 2 )J [ } 1]

diagram of J1 J2 J12 L(JI) L(J2) L(J12 ) and integrators

We will assume that Mi, M2, J2 , and wo are all known constants. We will look at the following three
cases for J, and J12.

13



CASE 1: J, is a known constant, but J12 is perturbed (variable payload position).

CASE 2: J12 is a known constant, but J, has arbitrary perturbations (variable core body MOI).

CASE 3: J12 is a known constant, but J, has diagonal perturbations (variable core body MOI).

Note that case 1 can be combined with case 2 or case 3.

Case 1: Moment-of-Inertia Variations due to Payload Position

Putting the MOI and Torque Matrices Directly into Linear Fractional Form

J12 has only three independent parameters, (x,y,z), so we must write J12 and L(J12) as linear frac-

tional transformations with respect to

A Sy 4Y (30)

where In, Iy, and Iz are identities of the appropriate dimensions.

The first step is to write J12 and L(J12) as explicit functions of (x,y,z). Equation 27 already gives J12

as an explicit quadratic function of (x,y,z).

Using Equation 27 in equation 17, we can get LLv(J, 2) as an explicit quadratic function of x, y, z.

[ F0 -2yz y2 1 4(y2 _ Z2) -4xy 4xz i
Lv(J, 2) = LLv(-ci 1]2) M 2yz 0 2 yj , m -3xy 3(x2 _z 2) y3yz (31)[ 129 2xy 0J xz -yz y 2 _ .x 2J

Polynomial (or even rational) matrix functions in several variables can be put directly into the
linear fractional format, however the dimension of the required A can be very large [ZDI.

In order to write LLv as a linear fractional transformation with respect to A, first write r as an

average value plus differences times 8.

Assume that the payload is restricted to move in a rectangular region defined by the following set:

14



rI + with IBI1 _1.0 (32)

SZ J 18z15 1.0

The 3 x 6 LLv matrix polynomial in equation 31 can be written using 3 x 6 coefficient matrices

Qij, Q, Qo which are functions of r.v and xbf, yiff, and zd.

3

LLV =[[Q 8] EQ]iQ (33)

This matrix polynomial can be written as a linear fractional transformation as follows:

LLV = LFTU C Q J, = DQ + CQAQ(I - AQAQ)-'BQ (34)

where AQ is chosen to be rilpotent of order 1, so that (I - AQAQ) - 1 = (I + AQAQ)

03x3 Q11 0313 Q12 03.3 Q13

06X3 066 O 066 066 066

0 36 0 3x 3 Q22 03x3 Q23

AQ = 0W 06X6 06 06X3 06 (35)

033x 0 6 0 >6 0 Q33

0W 06>6 OW 06x6 0W 06>16

BQ: = 6 CQ=[ 3x3 Q1 I31 Q2 IM Q3 ] DQ:Qo (36)

I6x6J

A = diag(B.I 9, 8y19 , 8.I9) (37)

This representation of LLv requires 27 Ss. In addition, it takes 12 Ss to represent J (or J-1) as an
LFT (see the section on expressing I as an LFT). The total number of S required is 39.

In order to reduce the dimension of the A, it is sometimes useful to first factor the matrix polynomials.
Polynomial functions in several variables cannot always be factored into linear terms, however in our

case it is possible.
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Factoring the MOI and Torque Matrices

J12 is already in factored form (see equation 27). The 3 x 6 matrix L(-[Ii~i] 2) Can also be factored
into left and rightl factors, each of which is linear in NIiir. The factors are not unique. The freedom in
the factorization is parameterized by an arbitrary vector X whose values are then chosen to reduce the
number of Ss needed in the LFT of the factor (see appendix for details).

L(-[-Fl-J 2) = F,(ICmiiL) FR(-TdiiiE)

LLV(_[4Miiil] 2) =FL Cd4iii ) FRLV(;M)

where (38)

FL(m.) =~i

-ry0 0 0 -3z-y1
F 4-M' 2y 0 4z 0 -x' + ;[E T LOE 'y02 y 3 OI_ hoeX=~

[y0 0 0 -Az -4yj Vr L

FL4mo= m' 2y 0 3z 0 3x +'F ; _ J'r~ choose X 6 =-1
LOy 0 2y y x 0 -j40

FRLV(4jMr) = [ 3X3]

Equation 16 now becomes:

J2 - (ji~ 0 =~( + L(J2) + FLOE) FROFMO] [('0 ~2 1 
- MG

(41)

-[LLv(jl) + L LV(j2) + FLLv(;1jjj FRLVQ(i~) [OJ- LV

The only dependence of the dynamics on m and r is through V W~ I and F(4ii ), both of which are
linear in Nriiir.
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big diagram with J, J2  i
L(J 1) L(J2) Fsys integrators

for body and LVLH torque inputs

with DELTA sizes labeled
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Putting the Factors into Linear Fractional Form

Expressing 4 /_ as a Linear Fractional Transformation

Assume that the payload is restricted to move in a rectangular region defined by the following set:

rE r,, + with IyI 1.0 (42)
h7z <if 8 1.0

then

001 0 01 1 z0
!9~v0 1 J [ 0 0][ 11 o] YY~ ] 6 ] [ ] o 0] ]

So
4m-I_.= C-, &, B- + I-, (44)

where

0 0 -1

0 1 r 1df 0 Zf
00 0 0y O O 1
-B1r= 0 0 C= 'F xd' 0 0 0 0 Z I r D=, I:r,,e (45)

0 -1 0 0 Xdd 0 Ydf 0 0

1 0 0

and

At = diag[8.,I2, yI2, zI2] (46)

Let P. be the following "system" matrix

P1t = [Ct ] (47)

Then equation 44 becomes

-fm T = LTU [Pr, Al] (48)

where LFTu is a Linear Fractional Transformation

Since J12 = -mq) 2, the above LFT for t is used twice in the expression for for J12 on the left hand

side of equation 29.
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Expressing FR as a Linear Fractional Transformnation

FR(VM.E) =FROMii ;ve,) +

o0 0 0 0 -11i
4M ~ od 0 0 -3 0j+

10 0 0 0 0r 0 00 0 ii-1] (49)
M if [0 1 0110 S, 0102 0 00 01

L01 o 0 a0 0 24O 0J0

so

FR( 4'M.E) = F AFR BFR + DFft (50)

where

~0 0 0 0 0 -1
00 0 0-3 0
2 00 0 0-1 0 0Ydjjf 0 0 Zdff 01

BF=0 2 0 0  0 0 CR rXdf0 0 Ydif 0 0 Zif~ DF= FR(4Mirved(5 1)
000 -34 0 CFRi Xdff0 0Yi0 0
0020 00 000

LO 0 0 4 0 0..

and

A FR = diag[8.I2, SyI3, 8.,1 (52)

Let PFft be the following "system" matrix

[a BF1J

.R = [CFR DNj (53)

Then equation 50 becomes

FR(4ui E) = LFTU "FR', AF,,] (54)

where LFr, is a Linear Fractional Transformation
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Expressing FLLV as a Linear Fr'-ctional Transformation

FLLV(Q m i) = FLLV(OM r-.d

[o m][ 0 [2 0 0 0 0

+"mydif 0 0O 2 1 0

+4" 6 0 0 -2

so

FLLV(x1m r_) = CFL v AFLV BFLLV + DFLLV (56)

where

-2 0 0 0 0 3
0 0 0 0 1 0 0  Ydif 0 Zdif
2 200 0 0-4 I 0 I 0(7

]B Lv -0 0 2 1  CFLLV =-QIXdO Zdif
0 0 0 0 -4 x dif 0 ydf 0
0 0 -2 3 0 0..

DFLLV = FLLV('1m,-c) AFLV diag[6xI 2, 8y12, 8zl2] (58)

Let PFL V be the following "system" matrix

0 BFLLVi
PFLLV= C DFLvJ (59)

Then equation 56 becomes

FLLV( m -) = LFTu [PFLLV' AFLLV] (60)

where LFTU is a Linear Fractional Transformation
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Case 2: Generic Mass-Properties Variations for a Single Body

A generic moment-of-inertia matrix can be written as

myy + mzz 0 0 1 T
J = U 0 mxx + mzz 0 UT (61)

0 0 mxx + my

where U is an orthogonal matrix ( three free parameters in U ) Note that this parameterization of J

automatically satisfies the constraint that the sum of any two of its eigenvalues is greater or equal to

the third eigenvalue.

The Cayley Transform provides a way of parameterizing U as a rational function of three parameters.

Since rational functions can be written as linear fractional transformations, they can be handled by the

structured singular value algorithms.

Let E R3 and let

U = (13 + )(I3 - D)- (62)

Then U is an orthogonal matrix, (UT = U-).
Proof:

(13 + D [UT - u-i] (I3 +D

= (13 + ) [(13 + ;)- 1 (13- t) - (13 - )(I3 + D)'] (I3 + (63)

= (I3 - ) - (13 - ) = 0

and

det(13 + D = I + I;1 * 0 (64)

so

U - 1 _ UT = 0 (65)

The LFrs for (13 + ) and (13 - ;)- 1 each take 6 5s, so U and UT each take 12 deltas. I also

takes 6 6s, so J takes a total of 30 8s. Since the expression for the dynamics in equation 16b has J in

it 5 different places, it could take as many as as 150 8s for the whole system when generic moment-

of-inertia matrices are used.
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Case 3: Diagonal Mass-Properties Perturbations for a Single Body

In [BP], MOI variations which leave J diagonal are put into LFT form. Some of those results are

reproduced here.

If U = I, so J is always diagonal, then the moment-of-inertia matrix can be written as

Emyy +mzz 0 0 1J
0 mxx + mzz 0 (66)
0 0 mxx + Iy

Note that

m Jyy + Jzz - Jx M)-Jxx + Jzz' - Jyy Jxx + Jyy - Jzz (7mxx = myy X =mzz = X Y *ZZ(67)

2 2 2

For this J,

0 0 ?rnyy1  F4(myyomZZ) 0 0

LLV(j) = L(J) = 0 0 0 3(mxx - mzz) 0 (68)

2myy 0 0 myy - mxx1

Since J and L(J) are both linear in the three independent parameters mxx, myy, and mzz, they can be

put directly into linear fractional form.

Assume that each diag element of J lies between some maximum and some minimum.

Let

J max + Jmin
2

(69)
Jmax - miJdif J.%-Jmn(9

2

Let

Jdifyy + Jdif. - Jdif.mXXdi =2
2

Jdif. + Jdif= - Jdifyymyydif = 2(70)
2

,Jail + Jdif, - Jdif.
mzzdif =2

2
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Then

i ave+

00 OMXXd 0

L 0 JL 0 mxX2if+

Y6mif 0

0 c1] yy 5.(71)

LF~~mz 0 j j

where

mydf0 [oX 011

o omydiC=L 0 0 0 0 10=(2
Bj 0 MY~~dif C, 1 0 0 0 0O1 D, Jv,(2

MZZdi 0 0

L0 MZZW 0

A= diag(5m,,.1 2, 5myyl2, 8mzzI2) (73)
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[0 0 2myy 4(myy - nzz) 0 0
L(J) = 0 0 0 0 3(mxx -mzz) 0

L-2myy 0 0 0 0 myy - mXXj

=L(Jave,) +

0 01 0 00 3mxxdd 0]

0 j 0 0 2mfyydif 4myydif 0 0y 2  (74)

[1 01 +
-200]i L 0 M~i

0 00 0 -3mzzdif O

0 0 0 0 3 0 df0
0 0 11 0 0 0 -m

0 O ByLU)y~f 000

0 0yif 0 0 0 m yydf 0LJ=l~o ](5

0 0 0 -4mzzdf 0 0 010100

0 0 0 0 -3mzzdi 0

DL(D) L(Jave)Avj = diag(8,.I 2 , 5myyI2, 8.1I2) (76)

This requires 6 Ss for L(J) and 6 8s for J.
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Scaling the Inputs, Outputs, States, and Time

Using English units, the space station has moments of inertia on the order of IIJII = 108 and the orbi-
tal rate is o = l0. These numbers show up raised to various powers in the state space equations
and give them large condition number. When solving the Ricatti equations for the H_* or H2 controll-
ers, numerical problems arise due to the poor condition number of the state space equations. One way
to dramatically improve the condition number is to make the system dimensionless. We made the
equations of motions dimensionless, by substituting:

o0 1 (77)

and

j - (78)
Jz

In order to make the perturbation equations dimensionless too, we must also substitute:

r)f (79)

This is equivalent to scaling time, scaling the state, and scaling the inputs.

VARIABLE SCALE FACTOR

time l/0o

momentum JO0)O

angular rate O

angles I

torques J"zO0 2
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Appendix on Factorization of 3 x 3 Quadratic Matrix Polynomials

Generic 3 x 3 homogeneous quadratic matrix polynomials, QQr), in 3 variables rl, r2, r3 may not be
factorable, however we are concerned with a special class of such matrices which satisfy QQ) r = 0.
This class of matrices does factor into left and right linear factor matrices: Q(r) = FL() FR(, and an
explicit formula is given for each factor.

THEOREM:

Given:
r E R3 (3 variables)
T r R3, 3 skew matrix formed from elements of r

q= [q112, -l13 9221' q223, .33,, -q33,, q23,, -q132] r S 3X8  (24 coefficients)

XE R3  (3 coefficients)
FQr e R3 a Matrix whose elements are homogeneous linear polynomials in the elements of r
Q(. E R3x3 Matrix whose elements are homogeneous quadratic polynomials in the elements of r

The following three statements are equivalent:

1) Q(r = 0

2) QQ. = F(r)

3) Q(Q) has 24 free coefficients q, and is of the form:

QQ. = [O, 112, ql13] r1rl + [1220, g,223] r2r2 + [-q33,, 2'33, 0] r3r3 +

+ -- 223, -332] r2r3 + [-913 9132' -33] rjr3 + [--121 22, 2 - 9132]

PROOF

2)--> 1)

Q(. r= FQr I r= 0

3) --> 2)
Given any matrix of the form of statement 3), set it equal to a general 3 x 3 homogeneous linear

matrix times T and then equate coefficients. A general homogeneous linear matrix polynomial in the
entries of r is of the form:
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FQ§) = F1 r, + F2 r2 + F3 r3

where Fi E R3 6 are coefficient matrices. Setting

[FI r, + F2 r2 + F3 r3] _= Q(i)

and equating coefficients gives:

F, = [ - 913,, _113' 9112] F2 = [q2231 + 2231, -9=] F3 = [-9332' 233, X + 91321

where X is an arbitrary vector. Note that FQ) has 27 free parameters, q,X so all possible homo-

geneous linear matrices can be generated as factors of the quadratic matrices given in statement 3).

1) --> 3)

A genl ral 3 x 3 matrix homogeneous quadratic polynomial in three variables has 54 free coefficients

and is of the form:

Q(r = Q11 r1r, + Q22 r2r2 + Q33 r3r3 + Q23 r2r3 + Q13 rjr 3 + Q12 rjr 2

where the Qij are 3 x 3 coefficient matrices.

Let the three columns of each Qij be denoted by:

Qj = [ ij' ij2, %3]

then

Q(O r.= ql , rlrjrj + gq r2r2r2 + 2333 r3r3r3 +

(g7.2 + q,22) rlr 2 r2 + (b3j + 9133) rlr3r3 +(9h12 + _q2,) rlrlr 2 +

( 32 + 9233) r2 r3r3 + (q113 + q131) rlrlr3 + (!2 + q232) r2r2r3 +

(223, + 9132 + 9123) rlr 2r3

Since Qr) r must vanish identically, all ten vector coefficients must be zero, leaving only 8 free vec-
tor quantities to parameterize Q. The 8 free vector quantities are those in the expression of statement

3).
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The constructive formulas for parameterizing Q() and F(r give a splitting for the following

homological-algebra exact sequences:

Long Exact Sequence:

a3

rT inclusion Fr x " r r R03
- )- -__4 --__ 0

dim 3 dim 27 dim 54 dim 30
_ q, Qij Qj/q

Short Exact Sequence:

a3

_T X Q(r) - R 0
0-40

dim 24 dim 54 dim 30
q Qij Qj/q

The kernel of each map is exactly the range of the previous map.
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ABSTRACT: Stability of Dynamic Inversion Control Laws Applied to
Nonlinear Aircraft Pitch-Axis Models

by Blaise Morton and Dale Enns, Honeywell SRC, Minneapolis

Introduction

Dynamic inversion is a nonlinear control technique that has been applied by Honeywell to a variety of realistic
aerospace vehicle models with reasonably good results. The list of study applications includes models of the F-
14 aircraft, the HARV F-18 aircraft, a McDonnell Douglas model of the NASP vehicle, and a General Dynamics
model of a next-generation booster vehicle. The main advantage of dynamic inversion over more conventional
linear control techniques is its applicability to the full nonlinear vehicle models.

The theory of dynamic inversion (and nonlinear control in general) is not well understood. Most of what we
know about dynamic inversion theory is summarized in the references [ElI], [E2], and [MEH-I].

This note describes a global stability result for dynamic inversion applied to nonlinear aircraft pitch-axis models.
The point is to examine the technique from a mathematical point of view and try to understand why and how it
works.

Section 1: Equations of Motion

We concentrate on aircraft pitch-axis models similar to those used in current aerospace vehicle design. The
body-axis coordinate system is used. See Figure 1. There are four states:

U = component of velocity in the aircraft longitudinal (x) axis
W = component of velocity in the aircraft vertical (z) axis
Q = vehicle pitch-rate
0 = vehicle pitch attitude relative to local horizontal.

The equations of motion are:

C.(cz) CXAB(a)

-~T m m
U -WQ -g sin(0) mn Cz(cz) CZ,8(c)

d UQ +g cos(0) 0 1 2 S m (1.1)

= + + s0 0 0 Xa) + PV Cms(a)8

0- J JI

0 J0

The variables in equation (1.1) have the following meaning:

g = gravitational acceleration (constant),
T = thrust (control input),
m = vehicle mass (constant),
p =air density (assumed constant here),
V =speed = V'U + W2 ,

a = angle of attack = atan(- )
U,

=y vehicle inertia (constant),



6 = elevator angle (control input),
c = mean aerodynamic chord (constant),
C1(a), C,(a), CM(a) = aerodynamic functions for 8 = 0,
C1 ,(a), C 5s(a), CM.(a) = aerodynamic functions due to nonzero 6.

The two control inputs T and 8 are assumed to be limited to values within a fixed interval. A reasonable set of
ranges for a fighter is 0:5 T < mg and -20 degrees : 86 <20 degrees. The aerodynamic functions usually depend
on Mach as well as a, we neglect the Mach dependence here. Though this model has a number of special
features introduced to simplify analysis, most of the discussion below can be augmented to apply to models of
more general type.

Section 2: The Equilibrium Manifold

The model (1.1) has the following form:

i = f(xu) (2.1)

where x is a vector in R' and u is a vector in R= . Let f.(x,u) denote the Jacobian matrix of the transformation f
from R' x R' to R'. Let U denote the set of allowed control values in Rm. Define the equilibrium manifold

M = {(x,u) I f(x,u) = 0, u in U, and f.(x,u) has rank n).

Projecting M onto the first factor we obtain M, the set of equilibrium states. Note that M and M depend on the
specified control limits.

We use T and 0 as coordinates on M.

Suppose T and 0 are fixed. Note that Q = 0. so the only unspecified terms in equation (1.1) are the aerodynamic
forces and moment. However, the direct aerodynamic force terms in the U,W degrees of freedom must exactly
balance the gravity and thrust forces for an equilibrium to exist. Therefore, the aerodynamic force vector in the
U,W tangent space is completely determined, even though we do not know the point (U,W).

We introduce the notion of residualized aerodynamic functions.

Definition 2.1: For the model represented by equation (1.1), the residualized aerodynamic functions are
C(ft), Cz(Ca) defined by:

[Cz()J = COCM (a). 
(2.2)

The meaning of the residualized aerodynamic functions is simple: at any equilibrium state the aerodynamic force
vector in the UW tangent space is:

1 _ 
[W ;(a 

, ]
[F(UW)J -,pV2S (2.3)

as can be verified by solving the equation Q = 0 in (1.1). A problem may arise at values of CE for which CMa(a)
is zero or (relatively) very small in magnitude. We deal with this problem by splitting it into two subproblems:
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1) Assume unlimited control authority and work with the full system
2) Restrict attention to a subset of the states on which control authority is adequate

Denote by A the set of a corresponding to equilbrium states: A is all angles from 0 to 2ir if CM,8(a) never van-
ishes and 8 is unlimited. In practice, elevator deflection angle is limited and its control effectiveness degrades at
angles of attack too far from zero, so in real applications the set A turns out to be a proper subset.

We define the notion of univalent residualized aerodynamic functions:

Definition 2.2: The residualized aerodynamic functions are called univalent if the function (C1 (a),CzQx)) defines
a one-to-one mapping from A onto its image in the space of directions in the UW tangent space.

Observation 2.1: Suppose the residualized aerodynamics are univalent. Then for each fixed value of T and 0
there is at most one equilibrium state X(T,9) in M.

The validity of this observation follows easily from the earlier discussion. Once the direction of the aero-
dynamic force at the equilibrium is known then the value of a is uniquely determined. Then V2 is determined
by the force magnitude, and the equilibrium values of U and W are uniquely determined.

Section 3: Dynamic Inversion

The control problem we consider here is the following:

Statement of the problem: Give an equilibrium state X, determine a controller u = K(x) so that X is a global
attractor for the system

x = f(xK(x)) (3.1)

It is clear that any global attractor for (3.1) must be an equilibrium state. Using dynamic inversion we will
address this problem for vehicle models having univalent residualized aerodynamic functions (see Section 2 for
definitions).

Dynamic inversion is a very simple technique (see [E1],[E2], and [MEHH]). We assume here that the reader
knows the basics.

The approach we take is to invert the rotational degrees of freedom to a set of stab!e, second order dynamics.
We leave the value of T fixed -- we could use T as a control input but we choose not to. The throttle is typi-
cally used as a low-bandwidth control that is not changed during dynamic maneuvers. In the rest of this section
we show how K is constructed and discuss stability of the attitude dynamics. The big question concerning the
stability of the complementary dynamics is addressed in Section 4.

To construct the controller K, first select a desired stable set of second-order linear dynamics for 0:

=-2 to Q - 2 (0 - Oc. ) (3.2)

Desirable sets of dynamics of this type for aircraft pitch axis control are described in the MIL-F-8785C
specifications document. These dynamics are realized in the closed-loop system if 8 takes values according to
the following equation:
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pVS d- CM(a)] (3.3)
C .(a)

where Q, has the value:

d= -2 C€o Q - 02 (0 - O,d) (3.4)

and 0d is the 0 value of the desired equilibrium state £. These equations will do the job so long as they give
allowed values of 8.

The surface saturation problem at high a appears in all real aircraft. That is the motivation for using thrust-
vectoring for high-a controL

The problem of attitude control by dynamic inversion using thrust vectoring was solved by Mike Elgersma in
[Ell. For our current problem, we assume the existence of an invariant set in the closed-loop state space inside
which the the pitch dynamics have been stabilized by dynamic inversion using aerodynamic surfaces u ly.

Recent analysis suggests there is an invariant set closely tied to practical aircraft flight. This set is a bounded
region such that:

1) a lies between the zero-lift value ao < 0 degrees and the maximum lift-to-drag value o6m,,
2) V lies between a minimum cruising speed Vj. and a maximum speed V.,,
3) the flight-path angle y = 0 - a lies in a fixed range about zero (say ± 10 degrees),
4) T is greater than or equal to the value needed to fly maximum y at the Via, condition
5) O is constrained to lie in an interval about zero consistent with conditions l and 3
6) Q is constrained to have magnitude smaller than a suitable e

Section 4: The Stability Result

For pitch-axis models, computer simulations show that the pitch-attitude control strategy presented in Section 3
has excellent stability properties over extreme ranges of initial and transient state conditions. So far we have
applied the technique without a rigorous proof that it should work globally. In this section we give a global sta-
bility result that begins to explain the results observed for pitch-axis applications.

We sketch the proofs for the unlimited control authority case.

Lemma 4.1: Suppose the aerodynamic drag is always positive. Then there is a finite disc D centered at the ori-
gin in the U,W plane into which all trajectories eventually enter and remain.

Proof: From equation (1.1) we can compute the time rate of change of V2 = U2 + W2:

d (U2 + W2 ) = 2 gVsin(t - 0) + 2 TVcos() - pV3S CD(,). (4.1)

dt

The expression CD denotes the total drag coefficient including direct surface effects. The first two terms on the
right side ae linear in V, while the last is cubic. For sufficiently large V the last term will dominate.

Lemma 4.2: Let F(U,W) = (F(U,W), F,(UW)) denote the residualized aerodynamic force vector defined in
equation 2.3

Define the residualized system:
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[-it(_ 
(4.2)

: g [cos(e a] + Lo+[]

Assume

div(F) = _L + (4.3)
au aw

for all (UW) not equal to (0,0). Then the only possible closed orbits of the residualized system are equilibria.

Proof: The proof is by contradiction. Let 0 denote the right hand side of equation 4.2. Suppose there is some
closed orbit C -- either a limit cycle or a homoclinic orbit. Let A denote the interior of C. By Green's theorem
in the plane,

j c <4)N> = f A div(O) dArea (4.4)

where v denotes the outward pointing unit normal vector to C. The integrand on the left vanishes identically by
construction, while the integrand on the right is equal to div(F) which is negative by assumption. This contradic-
tion proves the lemma.

Remark 4.1: This Lemma (and proof) are given as exercise 1.3 in chapter 2 of [H]. We approach the problem
this way because some examples we have looked at (the F-4, F-14, and F-15 aircraft) appear to satisfy the nega-
tive divergence condition. See Figures 2 an,1 3 (copied from [MEHH]).

We have already observed in Section 2 (Oblervation 2.1) that for models having univalent residualized aero-
dynamics there is a unique equilibrium state when T and 0 are fixed. Under the additional condiuon that the
residualized aerodynamic vector field has negative divergence, it follows by the Poincaire-Bendixson theory [H]
that when T and 0 are held fixed and the aerodynamics have negative divergence, the unique equilibrium state is
a global atuactor for the UW dynamics inside the invariapt set.

Section 5: Linear Models

In the linear case the issue of stability is related to right half plane zeros in the eleva" r to pitch angle transfer
function. Under the usual assumptions [McAGI this transfer function is given by

T1  T2  (5.1)
= (s2+aphs+bp)(s2+aps+bp)

where both zeros are typically in the left talf plane with a few exceptions: there are a few conditions where T,

is negative and there are post stall conditions where - is negative.

The application of dynamic inversion to the pitch axis in the linear case gives a closed loop characteristic equa-
tion given by

2 1 1

* 2(S)(S+2O )(s+- )(s+-) (5.2)T, T2
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so right half plane zeros of give unstable closed loop poles but yet

where a and C are specified. We conclude:

Observation 5.1: the dynamic inversion controller discussed in Section 3 for the linear model is stable if and
only if T, and T2 are positive.

Observation 5.1 makes it easy to check the stability of the closed-loop system by looking at standard tabular
data for the open-loop zeros. The open-loop parameters for the transfer functions of 10 aircraft at 94 total flight
conditions is tabulated in Heffley and Jewell's data book [Hi]. Of these 94 flight conditions there were four with

right hal li ane ,eros: the four exceptional values were in the range -0.027<- -<-0.00049 rad/sec. None of the
1

flight conditions were post stall so I was positive for all 94 conditions.

These are low frequency instabilities that pilots or autopilots usually stabilize with a combination of additional
outer loop feedbacks: the outer-loop feedback maps a combination of altitude, altitude rate, and velocity to a
combination of elevator and throttle.

In [McAG] there are approximate formulas for - that show that it is the variation of thrust minus drag with

velocity that causes the right half plane zeros for 3 of the 4 exceptional flight conditions. Since drag increases
with velocity (stabilizing) we conciude the right half plane zeros result in part from propulsion characteristics
(consequently, the stability result of Section 4 should not be expected to apply). These 3 cases were F-4 at Mach
0.6 and 35K ft altitude, and the XB-70 at Mach 0.6 and 20K ft and Mach 0.9 and 40K ft altitude.

The one other excepiaonal case is interesting. That case is the X-15 at Mach 1.6 and 80K ft altitude. The right
half plane zero is not associated with propulsion because the engine was off. We do not know why the stability
result of Section 4 does not work here (other than to say that some hypothesis was violated). This flight condi-
tion was exceptional in that the angle of attack above 14 degrees war the largest of all those listed for the X-15
(10 total).
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